skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term declines in chlorophyll a and variable phenology revealed by a 60-year estuarine plankton time series
Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophylla(chla), is an indicator of ecosystem quality. We analyzed temporal trends in chlafrom the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chlaconcentrations (1968 to 2019). A long-term chladecrease was observed with an average decline in the cumulative annual chlaconcentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chlaconcentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter–spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade−1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.  more » « less
Award ID(s):
1655686 2322676
PAR ID:
10512250
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
21
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Narragansett Bay (Rhode Island, USA) is an estuary undergoing changes from a combination of rising water temperatures, nutrient fluxes, and human uses. In this study, we created an ecosystem food web model and evaluated its ability to predict functional group biomasses. Specifically, we used Ecopath to construct 2 mass-balanced models covering different time periods in Narragansett Bay: a historical model using data from 1994-1998 and a present-day model that represents 2014-2018. With the historical model as a starting point, we used Ecosim fit to time series data and projected forward to present-day values, forcing the model with both phytoplankton biomass and fishing mortality. The biomass of most mid- and upper trophic level groups increased by 2018, with the exception of carnivorous benthos, which experienced a large decline. There were changes in the composition of fisheries, with a large increase in recreational benthivorous fish landings and a decrease in commercial landings of planktivorous fish and suspension feeding benthos. The inclusion of fishing mortality and phytoplankton biomass as forcing functions, as well as adjusting the vulnerability levels of prey, greatly improved our model fits for all functional groups with the exception of gelatinous zooplankton. Our ecosystem model was able to correctly predict the direction of change for all fish and fished invertebrate groups with a relatively high degree of precision, particularly for the upper trophic levels. Thus, this ecosystem model is broadly applicable and suitable to project trends in the Narragansett Bay food web associated with localized and adaptive ecosystem-based management. 
    more » « less
  2. Climate change is altering global ocean phenology, the timing of annually occurring biological events. We examined the changing phenology of the phytoplankton accumulation season west of the Antarctic Peninsula to show that blooms are shifting later in the season over time in ice-associated waters. The timing of the start date and peak date of the phytoplankton accumulation season occurred later over time from 1997 to 2022 in the marginal ice zone and over the continental shelf. A divergence was seen between offshore waters and ice-associated waters, with offshore bloom timing becoming earlier, yet marginal ice zone and continental shelf bloom timing shifting later. Higher chlorophylla(chla) concentration in the fall season was seen in recent years, especially over the northern continental shelf. Minimal long-term trends in annual chlaoccurred, likely due to the combination of later start dates in spring and higher chlain fall. Increasing spring wind speed is the most likely mechanism for later spring start dates, leading to deeper wind mixing in a region experiencing sea ice loss. Later phytoplankton bloom timing over the marginal ice zone and continental shelf will have consequences for surface ocean carbon uptake, food web dynamics, and trophic cascades. 
    more » « less
  3. Gobler, Christopher (Ed.)
    Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months. 
    more » « less
  4. Burford, Michele (Ed.)
    Abstract The impacts of pulsed nutrient injections or extreme runoff events on marine ecosystems are far less studied than those associated with long‐term eutrophication, particularly in regard to mechanisms regulating the response of plankton community structure. Over 800 million liters of nutrient‐rich water from a fertilizer mine were discharged over a 2‐week period into Tampa Bay, Florida, in 2021, providing a unique opportunity to document the plankton response. A 3D‐coupled hydrodynamic biogeochemical model was developed to investigate this response and to understand the observed succession of a large, short diatom bloom followed by a secondaryKarenia brevisbloom that lasted through the summer. The model reproduced the observed changes in nutrient concentration, total chlorophylla, and diatom andK. brevisbiomass in Tampa Bay. With a faster growth rate and spring temperature close to the optimal window of growth, diatoms had an initial competitive advantage, with 2/3 of the nutrient uptake due to ammonium and 1/3 due to nitrate. However, exhaustion of external nutrients led to the rapid decline of the diatom bloom, and the associated particular organic nitrogen sank onto the bay sediment. Enhanced sediment release of ammonium during the weeks following, and summer remineralization of dissolved organic nitrogen provided sufficient regenerated nitrogen to support slow‐growingK. brevisthat could capitalize on low nutrient conditions. Modeling analysis largely confirmed Margalef's conceptual model ofrtoK‐selected species succession and provided additional insights into nutrient cycling supporting the initial diatom bloom and the subsequent bloom of a slow‐growing harmful algal species. 
    more » « less
  5. Abstract In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms in late austral spring fuel a highly productive marine ecosystem. However, WAP atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are decreasing, and summer phytoplankton biomass in the northern WAP has decreased and shifted toward smaller cells. To better understand these relationships, an Imaging FlowCytobot was used to characterize seasonal (spring to autumn) phytoplankton community composition and cell size during a low (2017–2018) and high (2018–2019) chlorophyllayear in relation to physical drivers (e.g., sea ice and meteoric water) at Palmer Station, Antarctica. A shorter sea ice season with early rapid retreat resulted in low phytoplankton biomass with a low proportion of diatoms (2017–2018), while a longer sea ice season with late protracted retreat resulted in the opposite (2018–2019). Despite these differences, phytoplankton seasonal succession was similar in both years: (1) a large‐celled centric diatom bloom during spring sea ice retreat; (2) a peak summer phase comprised of mixotrophic cryptophytes with increases in light and postbloom organic matter; and (3) a late summer phase comprised of small (< 20 μm) diatoms and mixed flagellates with increases in wind‐driven nutrient resuspension. In addition, cell diameter decreased from November to April with increases in meteoric water in both years. The tight coupling between sea ice, meltwater, and phytoplankton species composition suggests that continued warming in the WAP will affect phytoplankton seasonal dynamics, and subsequently seasonal food web dynamics. 
    more » « less