Evolution: Plasticity versus Selection, or Plasticity and Selection?
                        
                    More Like this
- 
            Abstract Plasticity to reduce activity is a common way prey evade predators. However, by reducing activity prey often experience lower individual growth rates because they encounter their own prey less often. To overcome this cost, natural selection should not simply favor individuals generating stronger plasticity to reduce activity rates but also selection to resume activity once the threat of predation subsides. If such plasticity is adaptive, it should vary under environmental conditions that generate stronger selection for greater plasticity, such as predator density. Using a mesocosm experiment and observational study with a damselfly-prey/fish-predator system, we show that fish predation exerts selection for greater plasticity in activity rates of damselflies. Such selection allows damselfly activity levels to initially decrease and then rebound when the threat of predation dissipates, potentially helping to ameliorate a hypothesized growth penalty from activity reductions. We also find that the extent of plasticity in activity to the threat of fish predation increases, albeit slightly (r2 = 0.04%–0.063%), as fish densities increase across natural lakes, consistent with the idea that the magnitude of plasticity is shaped by environmental conditions underlying selection. Collectively, these results demonstrate how selection acts to drive adaptive plasticity in a common predator avoidance strategy.more » « less
- 
            Abstract The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slugAlderia willowiexhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk‐feeding (lecithotrophic) larvae during the summer, and more planktonic‐feeding (planktotrophic) larvae in the winter. I found significant family‐level variation in the reaction norms between 17 maternal families ofA. willowiwhen reared in a split‐brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg‐mass type inA. willowi,but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.more » « less
- 
            Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.more » « less
- 
            Summary Vegetative traits of plants can respond directly to changes in the environment, such as those occurring under climate change. That phenotypic plasticity could be adaptive, maladaptive, or neutral.We manipulated the timing of spring snowmelt and amount of summer precipitation in factorial combination and examined responses of specific leaf area (SLA), trichome density, leaf water content (LWC), photosynthetic rate, stomatal conductance and intrinsic water‐use efficiency (iWUE) in the subalpine herbIpomopsis aggregata. The experiment was repeated in three years differing in natural timing of snowmelt. To examine natural selection, we used survival, relative growth rate, and flowering as fitness indices.A 50% reduction in summer precipitation reduced stomatal conductance and increased iWUE, and doubled precipitation increased LWC. Combining natural and experimental variation, earlier snowmelt reduced soil moisture, photosynthetic rate and stomatal conductance, and increased trichome density and iWUE. Precipitation reduction reversed the mortality selection favoring high stomatal conductance under normal and doubled precipitation, and higher LWC improved growth.Earlier snowmelt is a strong signal of climate change and can change expression of leaf morphology and gas exchange traits, just as reduced precipitation can. Stomatal conductance and SLA showed adaptive plasticity under some conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    