Many coastal foundation plant species thrive across a range of environmental conditions, often displaying dramatic phenotypic variation in response to environmental variation. We characterized the response of propagules from six populations of the foundation species Rhizophora mangle L. to full factorial combinations of two levels of salinity (15 ppt and 45 ppt) reflecting the range of salinity measured in the field populations, and two levels of nitrogen (N; no addition and amended at approximately 3 mg N per pot each week) equivalent to comparing ambient N to a rate of addition of 75 kg per hectare per year. The response to increasing salinity included significant changes, i.e., phenotypic plasticity, in succulence and root to shoot biomass allocation. Propagules also showed plasticity in maximum photosynthetic rate and root to shoot allocation in response to N amendment, but the responses depended on the level of salinity and varied by population of origin. In addition, propagules from different populations and maternal families within populations differed in survival and all traits measured except photosynthesis. Variation in phenotypes, phenotypic plasticity and propagule survival within and among R. mangle populations may contribute to adaptation to a complex mosaic of environmental conditions and response to climate change.
more »
« less
Plasticity and artificial selection for developmental mode in a poecilogonous sea slug
Abstract The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slugAlderia willowiexhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk‐feeding (lecithotrophic) larvae during the summer, and more planktonic‐feeding (planktotrophic) larvae in the winter. I found significant family‐level variation in the reaction norms between 17 maternal families ofA. willowiwhen reared in a split‐brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg‐mass type inA. willowi,but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.
more »
« less
- Award ID(s):
- 1907177
- PAR ID:
- 10449864
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 11
- Issue:
- 20
- ISSN:
- 2045-7758
- Page Range / eLocation ID:
- p. 14217-14230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations.more » « less
-
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf‐level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6‐year‐old experi- mental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%–98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%–23% of spectral variation within populations and 14%–48% of the variation across all populations. Second, we found gene by environment interactions leading to population‐specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjust- ments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.more » « less
-
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf‐level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6‐year‐old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%–98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%–23% of spectral variation within populations and 14%–48% of the variation across all populations. Second, we found gene by environment interactions leading to population‐specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.more » « less
-
Abstract Circadian clocks confer adaptation to predictable 24‐h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of theArabidopsisrelativeBoechera strictasampled within only 1° of latitude but across an elevation gradient spanning 2460–3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7–20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher‐elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra‐annual variability. Our findings suggest that spatially fine‐grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.more » « less
An official website of the United States government
