This paper proposes a solution to the problem of cooperative exploration using an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV). More specifically, the UGV navigates through the free space, and the UAV provides enhanced situational awareness via its higher vantage point. The motivating application is search and rescue in a damaged building. A camera atop the UGV is used to track a fiducial tag on the underside of the UAV, allowing the UAV to maintain a fixed pose relative to the UGV. Furthermore, the UAV uses its front facing camera to provide a birds-eye-view to the remote operator, allowing for observation beyond obstacles that obscure the UGV's sensors. The proposed approach has been tested using a TurtleBot 2 equipped with a Hokuyo laser ranger finder and a Parrot Bebop 2. Experimental results demonstrate the feasibility of this approach. This work is based on several open source packages and the generated code is available on-line.
more »
« less
Experiments in unmanned aerial vehicle/unmanned ground vehicle radiation search
Abstract This paper discusses the results of a field experiment conducted at Savannah River National Laboratory to test the performance of several algorithms for the localization of radioactive materials. In this multirobot system, both an unmanned aerial vehicle, a custom hexacopter, and an unmanned ground vehicle (UGV), the ClearPath Jackal, equipped withγ‐ray spectrometers, were used to collect data from two radioactive source configurations. Both the Fourier scattering transform and the Laplacian eigenmap algorithms for source detection were tested on the collected data sets. These algorithms transform raw spectral measurements into alternate spaces to allow clustering to detect trends within the data which indicate the presence of radioactive sources. This study also presents a point source model and accompanying information‐theoretic active exploration algorithm. Field testing validated the ability of this model to fuse aerial and ground collected radiation measurements, and the exploration algorithm’s ability to select informative actions to reduce model uncertainty, allowing the UGV to locate radioactive material online.
more »
« less
- Award ID(s):
- 1650465
- PAR ID:
- 10087920
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Field Robotics
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 1556-4959
- Format(s):
- Medium: X Size: p. 818-845
- Size(s):
- p. 818-845
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unmanned vehicles, equipped with radiation detection sensors, can serve as a valuable aid to personnel responding to radiological incidents. The use of tele-operated ground vehicles avoids human exposure to hazardous environments, which in addition to radioactive contamination, might present other risks to personnel. Autonomous unmanned vehicles using algorithms for radioisotope classification, source localization, and efficient exploration allow these vehicles to conduct surveys with reduced human supervision allowing teams to address larger areas in less time. This work presents systems for autonomous radiation search with results presented in several proof-of-concept demonstrations.more » « less
-
Abstract Aedes aegyptimosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small containers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial imaging to map and classify potentialAe. aegyptibreeding sites with a specific focus on trash, including discarded tires. Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance, and overall likelihood of being a productiveAe. aegyptibreeding site. Aerial imaging offers a novel strategy to characterize, map, and quantify trash at risk of promotingAe. aegyptiproliferation, generating opportunities for further research on trash associations with disease and trash interventions.more » « less
-
This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis.more » « less
-
Abstract. Above polar ice sheets, atmospheric water vapor exchangeoccurs across the planetary boundary layer (PBL) and is an importantmechanism in a number of processes that affect the surface mass balance ofthe ice sheets. Yet, this exchange is not well understood and hassubstantial implications for modeling and remote sensing of the polarhydrologic cycle. Efforts to characterize the exchange face substantiallogistical challenges including the remoteness of ice sheet field camps,extreme weather conditions, low humidity and temperature that limit theeffectiveness of instruments, and dangers associated with flying mannedaircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV)sampling platform for operation in extreme polar environments that iscapable of sampling atmospheric water vapor for subsequent measurement ofwater isotopes. This system was deployed to the East Greenland Ice-coreProject (EastGRIP) camp in northeast Greenland during summer 2019. Foursampling flight missions were completed. With a suite of atmosphericmeasurements aboard the UAV (temperature, humidity, pressure, GPS) wedetermine the height of the PBL using online algorithms, allowing forstrategic decision-making by the pilot to sample water isotopes above andbelow the PBL. Water isotope data were measured by a Picarro L2130-iinstrument using flasks of atmospheric air collected within the nose cone ofthe UAV. The internal repeatability for δD and δ18O was2.8 ‰ and 0.45 ‰, respectively,which we also compared to independent EastGRIP tower-isotope data. Based onthese results, we demonstrate the efficacy of this new UAV-isotope platformand present improvements to be utilized in future polar field campaigns. Thesystem is also designed to be readily adaptable to other fields of study,such as measurement of carbon cycle gases or remote sensing of groundconditions.more » « less
An official website of the United States government
