skip to main content

Search for: All records

Award ID contains: 1650465

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    This article presents a dissipativity approach for robustness analysis using the framework of integral quadratic constraints (IQCs). The derived results apply for linear time‐varying nominal systems with uncertain initial conditions. IQC multipliers are used to describe the sets of allowable uncertainty operators, and signal IQC multipliers are used to describe the sets of allowable disturbance signals. The novel concepts of dichotomic nodes and their corresponding factorizations are introduced, which allow for the aforementioned multipliers to be general time‐varying operators. The results are illustrated via the robustness analysis of a flight controller for an unmanned aircraft system tasked to perform a Split‐S maneuver.

    more » « less
  2. Abstract

    This paper discusses the results of a field experiment conducted at Savannah River National Laboratory to test the performance of several algorithms for the localization of radioactive materials. In this multirobot system, both an unmanned aerial vehicle, a custom hexacopter, and an unmanned ground vehicle (UGV), the ClearPath Jackal, equipped withγ‐ray spectrometers, were used to collect data from two radioactive source configurations. Both the Fourier scattering transform and the Laplacian eigenmap algorithms for source detection were tested on the collected data sets. These algorithms transform raw spectral measurements into alternate spaces to allow clustering to detect trends within the data which indicate the presence of radioactive sources. This study also presents a point source model and accompanying information‐theoretic active exploration algorithm. Field testing validated the ability of this model to fuse aerial and ground collected radiation measurements, and the exploration algorithm’s ability to select informative actions to reduce model uncertainty, allowing the UGV to locate radioactive material online.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)