skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spread and Sparse: Learning Interpretable Transforms for Bandlimited Signals on Directed Graphs
We address the problem of learning a sparsifying graph Fourier transform (GFT) for compressible signals on directed graphs (digraphs). Blending the merits of Fourier and dictionary learning representations, the goal is to obtain an orthonormal basis that captures spread modes of signal variation with respect to the underlying network topology, and yields parsimonious representations of bandlimited signals. Accordingly, we learn a data-adapted dictionary by minimizing a spectral dispersion criterion over the achievable frequency range, along with a sparsity-promoting regularization term on the GFT coefficients of training signals. An iterative algorithm is developed which alternates between minimizing a smooth objective over the Stiefel manifold, and soft-thresholding the graph-spectral domain representations of the signals in the training set. A frequency analysis of temperature measurements recorded across the contiguous United States illustrates the merits of the novel GFT design.  more » « less
Award ID(s):
1809356 1750428
PAR ID:
10087988
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 52nd Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
742 - 746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a methodology to carry out vertex-frequency analyses of graph signals, with the goal of unveiling the signal’s frequency occupancy over a localized region in the network. To this end, we first introduce localized graph signals in the vertex domain, by defining windows that are localized around each node by construction. Recent directed graph Fourier transform (DGFT) advances facilitate the frequency analysis of said localized signals, to reveal the signal’s energy distribution in a way akin to a spectrogram in the vertex-frequency plane. We then learn a set of windows by applying gradient descent method to an optimization problem governed by penalty parameters in the spectral domain. We also argue about the tradeoff between the resolution in the vertex and frequency domains based on the said parameters. We evaluate the performance of the proposed windowed GFT approach through numerical experiments on synthetic and real-world graphs. 
    more » « less
  2. Graph Neural Networks have recently become a prevailing paradigm for various high-impact graph analytical problems. Existing efforts can be mainly categorized as spectral-based and spatial-based methods. The major challenge for the former is to find an appropriate graph filter to distill discriminative information from input signals for learning. Recently, myriads of explorations are made to achieve better graph filters, e.g., Graph Convolutional Network (GCN), which leverages Chebyshev polynomial truncation to seek an approximation of graph filters and bridge these two families of methods. Nevertheless, it has been shown in recent studies that GCN and its variants are essentially employing fixed low-pass filters to perform information denoising. Thus their learning capability is rather limited and may over-smooth node representations at deeper layers. To tackle these problems, we develop a novel graph neural network framework AdaGNN with a well-designed adaptive frequency response filter. At its core, AdaGNN leverages a simple but elegant trainable filter that spans across multiple layers to capture the varying importance of different frequency components for node representation learning. The inherent differences among different feature channels are also well captured by the filter. As such, it empowers AdaGNN with stronger expressiveness and naturally alleviates the over-smoothing problem. We empirically validate the effectiveness of the proposed framework on various benchmark datasets. Theoretical analysis is also provided to show the superiority of the proposed AdaGNN. The open-source implementation of AdaGNN can be found here: https://github.com/yushundong/AdaGNN. 
    more » « less
  3. Transfer learning on graphs drawn from varied distributions (domains) is in great demand across many applications. Emerging methods attempt to learn domain-invariant representations using graph neural networks (GNNs), yet the empirical performances vary and the theoretical foundation is limited. This paper aims at designing theory-grounded algorithms for graph domain adaptation (GDA). (i) As the first attempt, we derive a model-based GDA bound closely related to two GNN spectral properties: spectral smoothness (SS) and maximum frequency response (MFR). This is achieved by cross-pollinating between the OT-based (optimal transport) DA and graph filter theories. (ii) Inspired by the theoretical results, we propose algorithms regularizing spectral properties of SS and MFR to improve GNN transferability. We further extend the GDA theory into the more challenging scenario of conditional shift, where spectral regularization still applies. (iii) More importantly, our analyses of the theory reveal which regularization would improve performance of what transfer learning scenario, (iv) with numerical agreement with extensive real-world experiments: SS and MFR regularizations bring more benefits to the scenarios of node transfer and link transfer, respectively. In a nutshell, our study paves the way toward explicitly constructing and training GNNs that can capture more transferable representations across graph domains. Codes are released at https://github.com/Shen-Lab/GDA-SpecReg. 
    more » « less
  4. Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation. 
    more » « less
  5. Sparse coding refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary. Sparse coding has proven to be a successful and interpretable approach in many applications, such as signal processing, computer vision, and medical imaging. While this success has spurred much work on sparse coding with provable guarantees, work on the setting where the learned dictionary is larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical results in the over-realized regime are limited to the case of noise-less data. In this paper, we show that for over-realized sparse coding in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the ground-truth dictionary, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective and we prove that minimizing this new objective can recover the ground-truth dictionary. We corroborate our theoretical results with experiments across several parameter regimes, showing that our proposed objective enjoys better empirical performance than the standard reconstruction objective. 
    more » « less