Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial.
more »
« less
Heart Strings and Purse Strings. Carryover Effects of Emotions on Economic Decisions
More Like this
-
-
null (Ed.)A bstract We explore the cosmological consequences of the superconductivity of QCD axion strings. Axion strings can support a sizeable chiral electric current and charge density, which alters their early universe dynamics. We examine the possibility that shrinking axion string loops can become effectively stable remnants called vortons, supported by the repulsive electromagnetic force of the string current. We find that vortons in our scenario are generically unstable, and so do not pose a cosmological difficulty. Furthermore, if a primordial magnetic field (PMF) exists in the early universe, a large current is induced on axion strings, creating a significant drag force from interactions with the surrounding plasma. As a result, the strings are slowed down, which leads to an orders of magnitude enhancement in the number of strings per Hubble volume. Finally, we study potential implications for the QCD axion relic abundance. The QCD axion window is shifted by orders of magnitude in some parts of our parameter space.more » « less
-
null (Ed.)A bstract The study of non-supersymmetric string theories is shedding light on an important corner of the string landscape and might ultimately explain why, so far, we did not observe supersymmetry in our universe. We review how misaligned supersymmetry in closed-string theories leads to a cancellation between bosons and fermions even in non-supersymmetric string theories. We then show that the same cancellation takes place for open strings by studying an anti-D p -brane placed on top of an O p -plane in type II string theory. Misaligned supersymmetry consists in cancellations between bosons and fermions at different energy levels, in such a way that the averaged number of states grows at a rate dominated by a factor $$ {\mathrm{e}}^{C_{\mathrm{e}\mathrm{ff}}\sqrt{n}} $$ e C eff n , with C eff < C tot , where C tot is the inverse Hagedorn temperature. We prove the previously conjectured complete cancellation, i.e. we prove that C eff = 0, for a vast class of models.more » « less
-
Motivated by the increased interest in modelling non-dissipative materials by constitutive relations more general than those from Cauchy elasticity, we initiate the study of a class of stretch-limited elastic strings : the string cannot be compressed smaller than a certain length less than its natural length nor elongated larger than a certain length greater than its natural length. In particular, we consider equilibrium states for a string suspended between two points under the force of gravity (catenaries). We study the locations of the supports resulting in tensile states containing both extensible and inextensible segments in two situations: the degenerate case when the string is vertical and the non-degenerate case when the supports are at the same height. We then study the existence and multiplicity of equilibrium states in general with multiplicity differing markedly from strings satisfying classical constitutive relations.more » « less
-
A bstract In the AdS/CFT correspondence, single trace operators of large- N gauge theories at large spin J can be described by classical spinning strings, giving a geometric and classical description of their spectrum at strong coupling. We observe that in AdS 3 these strings have significant gravitational back-reaction at sufficiently large spin, since the gravitational force does not decay at long distances. We construct solutions for folded spinning strings coupled to gravity in AdS 3 and compute their spectrum, corresponding to the leading Regge trajectory of Virasroro primary operators. These solutions exist only below a maximal spin J < J max , and as J → J max the solution approaches an extremal rotating BTZ black hole.more » « less
An official website of the United States government

