skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carrollian Amplitudes from Strings
Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial.  more » « less
Award ID(s):
2209903
PAR ID:
10520426
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
4
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT. 
    more » « less
  2. A bstract Modular graph functions (MGFs) are SL(2 , ℤ)-invariant functions on the Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably regularized integrals of MGFs over the fundamental domain for SL(2 , ℤ). In earlier work, these integrals were evaluated for all MGFs up to two loops and for higher loops up to weight six. These results led to the conjectured uniform transcendentality of the genus-one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly evaluate the integrals of several infinite families of three-loop MGFs and investigate their transcendental structure. Up to weight seven, the structure of the integral of each individual MGF is consistent with the uniform transcendentality of string amplitudes. Starting at weight eight, the transcendental weights obtained for the integrals of individual MGFs are no longer consistent with the uniform transcendentality of string amplitudes. However, in all the cases we examine, the violations of uniform transcendentality take on a special form given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II superstring amplitudes do exhibit uniform transcendentality, then the special combinations of MGFs which enter the amplitudes must be such that these integrals of triple products of Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel challenge to the conjectured uniform transcendentality of genus-one string amplitudes. 
    more » « less
  3. A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes. 
    more » « less
  4. A bstract Celestial holography proposes a duality between gravitational scattering in asymptotically flat space-time and a conformal field theory living on the celestial sphere. Its dictionary relates the infinite dimensional space-time symmetry group to Ward identities of the CFT. The spontaneous breaking of these asymptotic symmetries governs the dynamics of the soft sector in the CFT. Here we show that this sector encodes non-trivial backreaction effects that exhibit characteristics of maximal quantum chaos. A key element in the derivation is the identification of the Hilbert space of celestial CFT, defined through radial quantization, with that of a constantly accelerating Rindler observer. From the point of view of the bulk, Rindler particles exhibit Lyapunov behavior due to shockwave interactions that shift the observer horizon. From the point of view of the boundary, the superrotation Goldstone modes affect the relevant representations of the celestial Virasoro symmetry in a manner that induces Lyapunov behavior of out-of-time-ordered celestial correlators. 
    more » « less
  5. null (Ed.)
    A bstract We describe the worldvolume for the bosonic sector of the lower-dimensional F-theory that embeds 5D, N=1 M-theory and the 4D type II superstring. This theory is a complexification of the fundamental 5-brane theory that embeds the 4D, N=1 M-theory of the 3D type II string in a sense that we make explicit at the level of the Lagrangian and Hamiltonian formulations. We find three types of section condition: in spacetime, on the worldvolume, and one tying them together. The 5-brane theory is recovered from the new theory by a double dimensional reduction. 
    more » « less