A bstract The NA62 experiment at CERN targets the measurement of the ultra-rare $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ decay, and carries out a broad physics programme that includes probes for symmetry violations and searches for exotic particles. Data were collected in 2016–2018 using a multi-level trigger system, which is described highlighting performance studies based on 2018 data.
more »
« less
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
This volume collects the accepted peer-reviewed papers presented at the 2018 NAACL Student Research Workshop, an event for junior researchers held as part of the larger NAACL 2018 conference.
more »
« less
- Award ID(s):
- 1803423
- PAR ID:
- 10088406
- Date Published:
- Journal Name:
- Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract On 22 December 2018, parts of the Anak Krakatau edifice collapsed, triggering a deadly tsunami. To investigate pre‐collapse surface displacements, we analyzed Interferometric Synthetic Aperture Radar satellite geodetic data from 2006 to 2018, acquired from ALOS‐1 (2006–2011), COSMO‐SkyMED (2012–2018), and Sentinel‐1 (2014–2018). We identified line‐of‐sight displacements on the southwestern flank throughout the study period. Inversion of COSMO‐SkyMED data revealed a rectangular dislocation with a cumulative slip of 12 m from April 2012 to December 2018. Fixing the fault geometry, we found the optimal slip for time periods corresponding to slip rate changes, ranging from 1.2 to 3.1 m/yr. The slip estimates for ALOS‐1 and Sentinel‐1 data were 0.88 m/yr and 1.1 m/yr, respectively, over their individual time periods. Overall, the detachment fault experienced approximately 15 m of slip from 2006 to 2018 with acceleration and deceleration periods, and a notable acceleration prior to the 2018 collapse.more » « less
-
null (Ed.)This addendum to the International Ocean Discovery Program (IODP) Expedition 383 Scientific Prospectus (Dynamics of the Pacific Antarctic Circumpolar Current; Lamy et al., 2018) addresses the results of the safety review of 10 new proposed drill sites by the IODP Environmental Protection and Safety Panel (EPSP) on 4–6 September 2018 and a change to the operations plan and the end port call for Expedition 383. Because of an adjustment to the R/V JOIDES Resolution 2018–2019 operations schedule, the end port for Expedition 383 has changed from Valparaiso, Chile, to Punta Arenas, Chile. Therefore, at the time of publication of this addendum, the expedition is scheduled to start and end in Punta Arenas, Chile. The dates of the expedition remain unchanged from the original Expedition 383 Scientific Prospectus (Lamy et al., 2018), from 20 May to 20 July 2019. The change in port reduces the distance and hence the transit time between the last drill site in the central South Pacific and the port in Chile, providing ~3 additional days for scientific drilling operations. For that reason, a new proposed primary site (CSP-7A) in the central South Pacific has been added to the original operations plan from Lamy et al. (2018), bringing the total number of primary sites planned for Expedition 383 to seven (Figures F1, F2, F3, F4). The current operations plan and time estimates include 5 days of port call activities, 38.2 days of operations, and 17.7 days of transit.more » « less
-
Aims.We inspect the microlensing data of the KMTNet survey collected during the 2018-2020 seasons in order to find lensing events produced by binaries with brown dwarf (BD) companions. Methods.In order to pick out binary-lens events with candidate BD lens companions, we conducted systematic analyses of all anomalous lensing events observed during the seasons from 2018 to 2020. By applying a selection criterion of mass ratio between the lens components of 0.03 ≲q≲ 0.1, we identify four binary-lens events with candidate BD companions, namely KMT-2018-BLG-0321, KMT-2018-BLG-0885, KMT-2019-BLG-0297, and KMT-2019-BLG-0335. For the individual events, we present interpretations of the lens systems and measure the observables that can be used to constrain the physical lens parameters. Results.The masses of the lens companions estimated from the Bayesian analyses based on the measured observables indicate high probabilities that the lens companions are in the BD mass regime; that is, 59%, 68%, 66%, and 66% for the four respective events.more » « less
-
Summary This work revisits a publication by Beanet al.(2018) that reports seven amino acid substitutions are essential for the evolution ofl‐DOPA 4,5‐dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Beanet al.(2018).Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Beanet al.(2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Beanet al.(2018) to re‐observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2‐mut3 variant.Multiplein vivoassays, in bothSaccharomyces cerevisiaeandNicotiana benthamiana, did not result in visible DODA activity in BvDODAα2‐mut3, with betalain production always 10‐fold below BvDODAα1.In vitroassays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2‐mut3 proteins, explaining their differing performancein vivo.In summary, we were unable to replicate thein vivoanalyses of Beanet al.(2018), and our quantitativein vivoandin vitroanalyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Beanet al.(2018).more » « less
An official website of the United States government

