Abstract The14C content of sedimentary organic matter (OM) and specific organic molecules provide valuable information on the source and age of OM stored in sediments, but these data are limited for tropical fluvial and lake sediments. We analyzed14C in bulk OM, palmitic acid (C16), and long‐chainn‐alkanoic acids (C24, C26, and C28), within fluvial and lake sediments in the catchment of Lake Izabal, a large tectonic lake basin in Guatemala. We combined these measurements with bulk and compound‐specific δ13C measurements, as well as sediment organic carbon to nitrogen (OC:N) ratios, to understand the source and age of sedimentary OM in different regions of the lake catchment. Most fatty acid and bulk OM samples were characterized by pre‐modern carbon, indicating important input of aged carbon with residence times of hundreds to thousands of years into sediments. We identified two mechanisms leading to aged carbon export to sediments. In the high‐relief and deforested Polochic catchment, older OM and fatty acids are associated with low % total organic carbon (TOC) and low OC:N, indicating aged OM associated with eroded mineral soil. In the smaller, low‐relief, and largely forested Oscuro catchment, old OM and fatty acids are associated with high %TOC and high OC:N ratios, indicating export of undegraded aged plant biomass from swamp peat. The age of bulk OM and fatty acids in Lake Izabal sediments is similar to the ages observed in fluvial sediments, implying that fluvial input of aged soil carbon makes an important contribution to lake sediment carbon reservoirs in this large tropical lake. 
                        more » 
                        « less   
                    
                            
                            Dimensions of Radiocarbon Variability within Sedimentary Organic Matter
                        
                    
    
            ABSTRACT Organic carbon (OC) radiocarbon ( 14 C) signatures in marine surface sediments are highly variable and the causes of this heterogeneity remain ambiguous. Here, we present results from a detailed 14 C-based investigation of an Arabian Sea sediment, including measurements on organic matter (OM) in bulk sediment, specific grain size fractions, and OC decomposition products from ramped-pyrolysis-oxidation (RPO). Our results show that 14 C ages of OM increase with increasing grain size, suggesting that grain size is an important factor controlling the 14 C heterogeneity in marine sediments. Analysis of RPO decomposition products from different grain size fractions reveals an overall increase in age of corresponding thermal fractions from finer to coarser fractions. We suggest that hydrodynamic properties of sediment grains exert the important control on the 14 C age distribution of OM among grain size fractions. We propose a conceptual model to account for this dimensionality in 14 C variability that invokes two predominant modes of OM preservation within different grain size fractions of Arabian Sea sediment: finer (<63 µm) fractions are influenced by OM-mineral grain aggregation processes, giving rise to relatively uniform 14 C ages, whereas OM preserved in coarser (>63 µm) fractions includes materials encapsulated within microfossils and/or entrained fossil ( 14 C-depleted) OC hosted in detrital mineral grains. Our findings highlight the value of RPO for assessment of 14 C age variability in sedimentary OC, and for assessing mechanisms of OM preservation in aquatic sediments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1755125
- PAR ID:
- 10088662
- Date Published:
- Journal Name:
- Radiocarbon
- Volume:
- 60
- Issue:
- 03
- ISSN:
- 0033-8222
- Page Range / eLocation ID:
- 775 to 790
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Radiocarbon ages and thermal stability measurements can be used to estimate the stability of soil organic carbon (OC). Soil OC is a complex reservoir that contains a range of compounds with different sources, reactivities, and residence times. This heterogeneity can shift bulk radiocarbon values and impact assessment of OC stability and turnover in soils. Four soil horizons (Oa, Bhs, Bs, Bg) were sampled from highly weathered 350 ka Pololu basaltic volcanics on the Island of Hawaii and analyzed by Ramped PyrOX (RPO) in both the pyrolysis (PY) and oxidation (OX) modes to separate a complex mixture of OC into thermally defined fractions. Fractions were characterized for carbon stable isotope and radiocarbon composition. PY and OX modes yielded similar results. Bulk radiocarbon measurements were modern in the Oa horizon (Fm = 1.013) and got progressively older with depth: the Bg horizon had an Fm value of 0.73. Activation energy distributions (p(E)) calculated using the ‘rampedpyrox’ model yielded consistent mean E values of 140 kJ mol-1 below the Oa horizon. The ‘rampedpyrox’ model outputs showed a mostly bimodal distribution in the p(E) below the Oa, with a primary peak at 135 kJ mol-1 and a secondary peak at 148 kJ mol-1, while the Oa was dominated by a single, higher E peak at 157 kJ mol-1. We suggest that mineral-carbon interaction, either through mineral surface-OC or metal-OC interactions, is the stabilization mechanism contributing to the observed mean E of 140 kJ mol-1 below the Oa horizon. In the Oa horizon, within individual RPO analyses, radiocarbon ages in the individual thermal fractions were indistinguishable (p[0.1). The flat age distributions indicate there is no relationship between age and thermal stability (E) in the upper horizon ([25 cm). Deeper in the soil profile higher lEf values were associated with older radiocarbon ages, with slopes progressively steepening with depth. In the deepest (Bg) horizon, there was the largest, yet modest change in Fm of 0.06 (626 radiocarbon years), indicating that older OC is slightly more thermally stable.more » « less
- 
            This dataset contains grain size records from three Integrated Ocean Drilling Program core sites (U1345, U1343, and U1339) in the Bering Sea. These records are used to determine the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity in the Bering Sea during a past warm interval (Marine Isotope Stage 11, 424-374 thousand years ago (ka)). Grain size is measured using a laser diffraction particle size analyzer (Malvern Mastersizer 3000), and is reported for bulk sediments, and for the terrigenous fraction only. The raw dataset provided by the Malvern software includes the volume % of grains in 109 bin sizes, as well as the 10th (Dx10), 50th (Dx50) and 90th (Dx90) percentiles. We also provide the volume distribution of grains in the following size fractions: clay (less than 2 micrometers (μm)); silt (2-63 μm); sand (63-2000 μm); gravel (greater than 2000 μm); ice-rafted debris (greater than 150 μm; greater than 250 μm), and sortable silt (10-63 μm). Additional grain size parameters, including mean size, sorting and skewness, are calculated in GRADISTAT.more » « less
- 
            ABSTRACT In practice, obtaining radiocarbon ( 14 C) composition of organic matter (OM) in sediments requires first removing inorganic carbon (IC) by acid-treatment. Two common treatments are acid rinsing and fumigation. Resulting 14 C content obtained by different methods can differ, but underlying causes of these differences remain elusive. To assess the influence of different acid-treatments on 14 C content of sedimentary OM, we examine the variability in 14 C content for a range of marine and river sediments. By comparing results for unacidified and acidified sediments [HCl rinsing (Rinse HCl ) and HCl fumigation (Fume HCl )], we demonstrate that the two acid-treatments can affect 14 C content differentially. Our findings suggest that, for low-carbonate samples, Rinse HCl affects the Fm values due to loss of young labile organic carbon (OC). Fume HCl makes the Fm values for labile OC decrease, leaving the residual OC older. High-carbonate samples can lose relatively old organic components during Rinse HCl , causing the Fm values of remaining OC to increase. Fume HCl can remove thermally labile, usually young, OC and reduce the Fm values. We suggest three factors should be taken into account when using acid to remove carbonate from sediments: IC abundance, proportions of labile and refractory OC, and environmental matrix.more » « less
- 
            Grain size is an important textural property of sediments and is widely used in paleoenvironmental studies as a means to infer changes in the sedimentary environment. However, grain size parameters are not always easy to interpret without a full understanding of the factors that influence grain size. Here, we measure grain size in sediment cores from the Bering slope and the Umnak Plateau, and review the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity, during a past warm interval (Marine Isotope Stage 11, 424-374 ka). In general, sediments in the Bering Sea are hemipelagic, making them ideal deposits for paleoenvironmental reconstructions, but there is strong evidence in the grain size distribution for contourite deposits between ~408-400 ka at the slope sites, suggesting a change in bottom current transport at this time.We show that the grain size of coarse (>150 μm) terrigenous sediment can be used effectively as a proxy for ice rafting, although it is not possible to distinguish between iceberg and sea ice rafting processes, based on grain size alone.We find that the mean grain size of bulk sediments can be used to infer changes in productivity on glacial-interglacial timescales, but the size and preservation of diatom valves also exert a control on mean grain size. Lastly, we show that the mean size of sortable silt (10-63 μm) is not a valid proxy for bottom current strength in the Bering Sea, because the input of ice-rafted silt confounds the sortable silt signal.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    