skip to main content


Title: Low-Cost Remote Supervisory Control System for an Industrial Process using Profibus and Profinet
In this paper we demonstrate two applications of a low-cost remote supervisory control and data acquisition system in two models. The first model is demonstrated with a Profibus-DP protocol based system in which a master Programmable Logic Controller (PLC) unit with control inputs and display outputs controls the speed and monitors the overload condition of a DC motor that is connected to a slave PLC in real time. In the upgraded model, a Profinet protocol is used to connect PLCs, and a power-line communication link is used to remotely connect the control HMI to the network. In both models, remote Supervisory control is achieved using user-defined control functions that act altogether as a block-oriented function library or toolbox. High levels of performance are achieved in real time control and data acquisition in both models.  more » « less
Award ID(s):
1801120
NSF-PAR ID:
10088812
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2019 SoutheastCon
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A low-cost remote supervisory control capability is added to a packaging process, in which a low-voltage signal is used to communicate between a distant HMI control panel and a PLC network using the AC power line as a communication medium. The network is a star-topology and uses a Mater-slave protocol. Remote Supervisory control is achieved using a user-defined toolbox of control functions. In this system, a Programmable Logic Controller (PLC) is used to control a process and interface with the operator through a Human Machine Interface (HMI) Panel. A star topology ethernet network is used to connect the PLCs and the HMI panel. 
    more » « less
  2. In recent years, there has been a growing interest in so-called smart cities. These cities use technology to connect and enhance the lives of their citizens. Smart cities use many Internet of Things (loT) devices, such as sensors and video cameras, that are interconnected to provide constant feedback and up-to-date information on everything that is happening. Despite the benefits of these cities, they introduce a numerous new vulnerabilities as well. These smart cities are now susceptible to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or destroy computer systems.” Through the use of an educational and research-based loT test-bed with multiple networking layers and heterogeneous devices connected to simultaneously support networking research, anomaly detection, and security principles, we can pinpoint some of these vulnerabilities. This work will contribute potential solutions to these vulnerabilities that can hopefully be replicated in smart cities around the world. Specifically, in the transportation section of our educational smart city several vulnerabilities in the signal lights, street lights, and the cities train network were discovered. To conduct this research two scenarios were developed. These consisted of inside the network security and network perimeter security. For the latter we were able to find extensive vulnerabilities that would allow an attacker to map the entire smart city sub-network. Solutions to this problem are outlined that utilize an Intrusion Detection System and Port Mirroring. However, while we were able to exploit the city's Programmable Logic Controller (PLC) once inside the network, it was found that due to dated Supervisory Control and Data Acquisition (SCADA) systems, there were almost no solutions to these exploits. 
    more » « less
  3. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  4. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated the EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  5. The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in the resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems. 
    more » « less