In this paper we demonstrate two applications of a low-cost remote supervisory control and data acquisition system in two models. The first model is demonstrated with a Profibus-DP protocol based system in which a master Programmable Logic Controller (PLC) unit with control inputs and display outputs controls the speed and monitors the overload condition of a DC motor that is connected to a slave PLC in real time. In the upgraded model, a Profinet protocol is used to connect PLCs, and a power-line communication link is used to remotely connect the control HMI to the network. In both models, remote Supervisory control is achieved using user-defined control functions that act altogether as a block-oriented function library or toolbox. High levels of performance are achieved in real time control and data acquisition in both models.
more »
« less
Low-Cost Remote Supervisory Control System for an Industrial Process
A low-cost remote supervisory control capability is added to a packaging process, in which a low-voltage signal is used to communicate between a distant HMI control panel and a PLC network using the AC power line as a communication medium. The network is a star-topology and uses a Mater-slave protocol. Remote Supervisory control is achieved using a user-defined toolbox of control functions. In this system, a Programmable Logic Controller (PLC) is used to control a process and interface with the operator through a Human Machine Interface (HMI) Panel. A star topology ethernet network is used to connect the PLCs and the HMI panel.
more »
« less
- Award ID(s):
- 1801120
- PAR ID:
- 10091559
- Date Published:
- Journal Name:
- NSF-ATE National Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Ensuring the integrity of embedded programmable logic controllers (PLCs) is critical for safe operation of industrial control systems. In particular, a cyber-attack could manipulate control logic running on the PLCs to bring the process of safety-critical application into unsafe states. Unfortunately, PLCs are typically not equipped with hardware support that allows the use of techniques such as remote attestation to verify the integrity of the logic code. In addition, so far remote attestation is not able to verify the integrity of the physical process controlled by the PLC. In this work, we present PAtt, a system that combines remote software attestation with control process validation. PAtt leverages operation permutations—subtle changes in the operation sequences based on integrity measurements—which do not affect the physical process but yield unique traces of sensor readings during execution. By encoding integrity measurements of the PLC’s memory state (software and data) into its control operation, our system allows to remotely verify the integrity of the control logic based on the resulting sensor traces. We implement the proposed system on a real PLC controlling a robot arm, and demonstrate its feasibility. Our implementation enables the detection of attackers that manipulate the PLC logic to change process state and/or report spoofed sensor readings (with an accuracy of 97% against tested attacks).more » « less
-
Abstract Soft robots have attracted great attention in the past decades owing to their unique flexibility and adaptability for accomplishing tasks via simple control strategies, as well as their inherent safety for interactions with humans and environments. Here, a soft robotic manipulation system capable of stiffness variation and dexterous operations through a remotely controlled manner is reported. The smart manipulation system consists of a soft omnidirectional arm, a dexterous multimaterial gripper, and a self‐powered human–machine interface (HMI) for teleoperation. The cable‐driven soft arm is made of soft elastomers and embedded with low melting point alloy as a stiffness‐tuning mechanism. The self‐powered HMI patches are designed based on the triboelectric nanogenerator that utilizes a sliding mode of tribo‐layers made of copper and polytetrafluoroethylene. The novel soft manipulation system has great potential for soft and remote manipulation and human machine interactions in a variety of applications from elderly care to surgical operation to agriculture harvesting.more » « less
-
Microassembly systems utilizing precision robotics have long been used for realizing 3-dimensional microstructures such as microrobots. Prior to assembly, such components are fabricated using Micro-Electro-Mechanical-System (MEMS) technology. The microassembly system then directs a microgripper through automated or human-controlled pick-and-place operations. In this paper, we describe a novel custom microassembly system, named NEXUS. The NEXUS integrates multi-degree of freedom (DOF) precision positioners, microscope computer vision, and micro-scale process tools such as a microgripper and vacuum tip. A semi-autonomous human-machine interface (HMI) is programmed by NI LabVIEW® to allow the operator to interact with the microassembly system. The NEXUS human-machine interface includes multiple functions, such as positioning, target detection, visual servoing, and inspection. The microassembly system’s HMI was used by operators to assemble various 3-dimensional microrobots such as the Solarpede, a novel light-powered stick-and-slip mobile microcrawler. Experimental results are reported in this paper that evaluate the system’s semi-autonomous capabilities in terms of assembly rate and yield and compare them to purely teleoperated assembly performance. Results show that the semi-automated capabilities of the microassembly system’s HMI offer a more consistent assembly rate of microrobot components.more » « less
-
Supervisory control of a humanoid robot in a manipulation task requires coordination of remote perception with robot action, which becomes more demanding with multiple moving cameras available for task supervision. We explore the use of autonomous camera control and selection to reduce operator workload and improve task performance in a supervisory control task. We design a novel approach to autonomous camera selection and control, and evaluate the approach in a user study which revealed that autonomous camera control does improve task performance and operator experience, but autonomous camera selection requires further investigation to benefit the operator’s confidence and maintain trust in the robot autonomy.more » « less
An official website of the United States government

