12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blockedmore »
Neomycin: An Effective Inhibitor of Jasmonate-Induced Reactions in Plants
Jasmonates are important phytohormones involved in both plant developmental processes as well as defense reactions. Many JA-mediated plant defense responses have been studied in model plants using mutants of the jasmonate signaling pathway. However, in plant species where JA-signaling mutants are not accessible, the availability of a tool targeting JA signaling is crucial to investigate jasmonate-dependent processes. Neomycin is a poly-cationic aminoglycoside antibiotic that blocks the release of Ca2+ from internal stores. We examined the inhibitory activities of neomycin on different jasmonate-inducible responses in eight different plant species: Intracellular calcium measurements in Nicotiana tabacum cell culture, Sporamin gene induction in Ipomoea batatas, PDF2.2 gene expression in Triticum aestivum, Nepenthesin protease activity measurement in Nepenthes alata, extrafloral nectar production in Phaseolus lunatus, nectary formation in Populus trichocarpa, terpene
accumulation in Picea abies, and secondary metabolite generation in Nicotiana attenuata. We are able to show that neomycin, an easily manageable and commercially available compound, inhibits JA-mediated responses across the plant kingdom.
- Award ID(s):
- 1656057
- Publication Date:
- NSF-PAR ID:
- 10088832
- Journal Name:
- Journal of plant growth regulation
- ISSN:
- 0721-7595
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
To obtain better insight into the mechanisms of selenium hyperaccumulation in Stanleya pinnata, transcriptome-wide differences in root and shoot gene expression levels were investigated in S. pinnata and related nonaccumulator Stanleya elata grown with or without 20 M selenate. Genes predicted to be involved in sulfate/selenate transport and assimilation or in oxidative stress resistance (glutathione-related genes and peroxidases) were among the most differentially expressed between species; many showed constitutively elevated expression in S. pinnata. A number of defense-related genes predicted to mediate synthesis and signaling of defense hormones jasmonic acid (JA, reported to induce sulfur assimilatory and glutathione biosynthesis genes),more »
-
Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl Carrier Proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pathovar tomato (Pto). The mutant acp1 plants have reduced levels of linolenic acid (18:3),more »
-
A wide range of proteins with diverse functions in development, defense, and stress responses are O -arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O -glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O -glycosylation of the Hyp C 4 -OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (Ara f Ts)more »
-
The inhibition of hypocotyl elongation by ethylene in dark-grown seedlings was the basis of elegant screens that identified ethylene-insensitive Arabidopsis mutants, which remained tall even when treated with high concentrations of ethylene. This simple approach proved invaluable for identification and molecular characterization of major players in the ethylene signaling and response pathway, including receptors and downstream signaling proteins, as well as transcription factors that mediate the extensive transcriptional remodeling observed in response to elevated ethylene. However, the dark-adapted early developmental stage used in these experiments represents only a small segment of a plant’s life cycle. After a seedling’s emergence frommore »