Abstract Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN;Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and differentatgmutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activatingATGexpression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
more »
« less
Neomycin: An Effective Inhibitor of Jasmonate-Induced Reactions in Plants
Jasmonates are important phytohormones involved in both plant developmental processes as well as defense reactions. Many JA-mediated plant defense responses have been studied in model plants using mutants of the jasmonate signaling pathway. However, in plant species where JA-signaling mutants are not accessible, the availability of a tool targeting JA signaling is crucial to investigate jasmonate-dependent processes. Neomycin is a poly-cationic aminoglycoside antibiotic that blocks the release of Ca2+ from internal stores. We examined the inhibitory activities of neomycin on different jasmonate-inducible responses in eight different plant species: Intracellular calcium measurements in Nicotiana tabacum cell culture, Sporamin gene induction in Ipomoea batatas, PDF2.2 gene expression in Triticum aestivum, Nepenthesin protease activity measurement in Nepenthes alata, extrafloral nectar production in Phaseolus lunatus, nectary formation in Populus trichocarpa, terpene accumulation in Picea abies, and secondary metabolite generation in Nicotiana attenuata. We are able to show that neomycin, an easily manageable and commercially available compound, inhibits JA-mediated responses across the plant kingdom.
more »
« less
- Award ID(s):
- 1656057
- PAR ID:
- 10088832
- Date Published:
- Journal Name:
- Journal of plant growth regulation
- ISSN:
- 0721-7595
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extracellular ATP (eATP) signaling inArabidopsis thalianais mediated by the purinoceptor P2K1. Previous studies have clarified that the downstream transcriptional responses to eATP involve jasmonate (JA)-based signaling components such as the JA receptor (COI1) and JA-responsive bHLH transcription factors (MYCs). However, the specific contributions of JA signaling itself on eATP signaling are unexplored. Here, we report that JA primes plant responses to eATP through P2K1. Our findings show that JA treatment significantly upregulatesP2K1transcription, corroborating our observation that JA facilitates eATP-induced cytosolic calcium elevation and transcriptional reprogramming in a JA signaling-dependent manner. Additionally, we find that salicylic acid pretreatment represses eATP-induced plant response. These results suggest that JA accumulation during biotic or abiotic stresses may potentiate eATP signaling, enabling plants to better cope with subsequent stress events. Plant hormone jasmonate (JA) enhances plant responses to extracellular ATP (eATP) inArabidopsis thalianathrough a mechanism dependent on the JA receptor COI1 and the eATP receptor P2K1. The reciprocal amplification of these signals provides a mechanistic explanation for how plants effectively respond to different stress events.more » « less
-
Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA-Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Protein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.more » « less
-
Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS con- structs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA- Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Pro- tein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no addi- tive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.more » « less
-
Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA-Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Protein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.more » « less
An official website of the United States government

