skip to main content


Title: Climate and the Global Famine of 1876–78
From 1875 to 1878, concurrent multiyear droughts in Asia, Brazil, and Africa, referred to as the Great Drought, caused widespread crop failures, catalyzing the so-called Global Famine, which had fatalities exceeding 50 million people and long-lasting societal consequences. Observations, paleoclimate reconstructions, and climatemodel simulations are used 1) to demonstrate the severity and characterize the evolution of drought across different regions, and 2) to investigate the underlying mechanisms driving its multiyear persistence. Severe or record-setting droughts occurred on continents in both hemispheres and in multiple seasons, with the ‘‘Monsoon Asia’’ region being the hardest hit, experiencing the single most intense and the second most expansive drought in the last 800 years. The extreme severity, duration, and extent of this global event is associated with an extraordinary combination of preceding cool tropical Pacific conditions (1870–76), a record-breaking El Niño (1877–78), a record strong Indian Ocean dipole (1877), and record warm North Atlantic Ocean (1878) conditions. Composites of historical analogs and two sets of ensemble simulations—one forced with global sea surface temperatures (SSTs) and another forced with tropical Pacific SSTs—were used to distinguish the role of the extreme conditions in different ocean basins. While the drought in most regions was largely driven by the tropical Pacific SST conditions, an extreme positive phase of the Indian Ocean dipole and warm NorthAtlantic SSTs, both likely aided by the strong El Niño in 1877–78, intensified and prolonged droughts in Australia and Brazil, respectively, and extended the impact to northern and southeastern Africa. Climatic conditions that caused the Great Drought and Global Famine arose from natural variability, and their recurrence, with hydrological impacts intensified by global warming, could again potentially undermine global food security.  more » « less
Award ID(s):
1243204
NSF-PAR ID:
10089000
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of climate
Volume:
31
ISSN:
1520-0442
Page Range / eLocation ID:
9445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Droughts that span the states of Washington, Oregon, and California are rare but devastating due to their large spatial coverage and potential loss of redundancies in water, agricultural, and fire-fighting resources. Such pan-coastal droughts [which we define using boreal summer volumetric soil moisture along the U.S. Pacific coast (32°–50°N, 115°–127°W)] require a more precise understanding of the roles played by the Pacific Ocean and internal atmospheric variability. We employ 16-member ensembles of the Community Atmosphere Model version 5 and Community Climate Model version 3 forced with observed sea surface temperatures (SSTs) from 1856 to 2012 to separate and quantify the influences of the tropical Pacific and internal atmospheric variability on pan-coastal droughts; all other boundary conditions are kept at climatological levels to explicitly isolate for the impacts of SST changes. Internal atmospheric variability is the dominant driver of pan-coastal droughts, accounting for 84% of their severity, and can reliably generate pan-coastal droughts even when ocean conditions do not favor drought. Cold phases of the Pacific Ocean play a secondary role and contribute, on average, only 16% to pan-coastal drought severity. Spatiotemporal analyses of precipitation and soil moisture along the U.S. Pacific coast corroborate these findings and identify an antiphased wet–dry dipole pattern induced by the Pacific to play a more secondary role. Our model framework expands on previous observational analyses that point to the spatially uniform forcing of internal atmospheric variability as the more dominant mode of hydroclimate variability along the U.S. Pacific coast. The secondary nature of oceanic forcing suggests limited predictability of pan-continental droughts. 
    more » « less
  2. null (Ed.)
    Abstract Substantial research on the teleconnections between rainfall and sea-surface temperatures (SSTs) has been conducted across equatorial Africa as a whole, but currently no focused examination exists for western Uganda, a rainfall transition zone between eastern equatorial Africa (EEA) and central equatorial Africa (CEA). This study examines correlations between satellite-based rainfall totals in western Uganda and SSTs – and associated indices – across the tropics over 1983-2019. It is found that rainfall throughout western Uganda is teleconnected to SSTs in all tropical oceans, but much more strongly to SSTs in the Indian and Pacific Oceans than the Atlantic Ocean. Increased Indian Ocean SSTs during boreal winter, spring, and autumn and a pattern similar to a positive Indian Ocean Dipole during boreal summer are associated with increased rainfall in western Uganda. The most spatially complex teleconnections in western Uganda occur during September-December, with northwestern Uganda being similar to EEA during this period and southwestern Uganda being similar to CEA. During boreal autumn and winter, northwestern Uganda has increased rainfall associated with SST patterns resembling a positive Indian Ocean Dipole or El Niño. Southwestern Uganda does not have those teleconnections; in fact, increased rainfall there tends to be more associated with La Niña-like SST patterns. Tropical Atlantic Ocean SSTs also appear to influence rainfall in southwestern Uganda in boreal winter as well as in boreal summer. Overall, western Uganda is a heterogeneous region with respect to rainfall-SST teleconnections; therefore, southwestern Uganda and northwestern Uganda require separate analyses and forecasts, especially during boreal autumn and winter. 
    more » « less
  3. null (Ed.)
    Heavy monsoon rainfall ravaged a large swath of East Asia in summer 2020. Severe flooding of the Yangtze River displaced millions of residents in the midst of a historic public health crisis. This extreme rainy season was not anticipated from El Niño conditions. Using observations and model experiments, we show that the record strong Indian Ocean Dipole event in 2019 is an important contributor to the extreme Yangtze flooding of 2020. This Indian Ocean mode and a weak El Niño in the Pacific excite downwelling oceanic Rossby waves that propagate slowly westward south of the equator. At a mooring in the Southwest Indian Ocean, the thermocline deepens by a record 70 m in late 2019. The deepened thermocline helps sustain the Indian Ocean warming through the 2020 summer. The Indian Ocean warming forces an anomalous anticyclone in the lower troposphere over the Indo-Northwest Pacific region and intensifies the upper-level westerly jet over East Asia, leading to heavy summer rainfall in the Yangtze Basin. These coupled ocean-atmosphere processes beyond the equatorial Pacific provide predictability. Indeed, dynamic models initialized with observed ocean state predicted the heavy summer rainfall in the Yangtze Basin as early as April 2020. 
    more » « less
  4. Abstract

    The contributions of oceanic and atmospheric variability to spatially widespread summer droughts in the contiguous United States (hereafter, pan‐CONUS droughts) are investigated using 16‐member ensembles of the Community Climate Model version 3 (CCM3) forced with observed sea surface temperatures (SSTs) from 1856–2012. The employed SST forcing fields are either (i) global or restricted to the (ii) tropical Pacific or (iii) tropical Atlantic to isolate the impacts of these two ocean regions on pan‐CONUS droughts. Model results show that SST forcing of pan‐CONUS droughts originates almost entirely from the tropical Pacific because of atmospheric highs from the northern Pacific to eastern North America established by La Niña conditions, with little contribution from the tropical Atlantic. Notably, in all three model configurations, internal atmospheric variability influences pan‐CONUS drought occurrence by as much or more than the ocean forcing and can alone cause pan‐CONUS droughts by establishing a dominant high centered over the U.S. montane west. Similar results are found for the Community Atmosphere Model version 5 (CAM5). Model results are compared to the observational record, which supports model‐inferred contributions to pan‐CONUS droughts from La Niñas and internal atmospheric variability. While there may be an additional association with warm Atlantic SSTs in the observational record, this association is ambiguous due to the limited number of observed pan‐CONUS droughts. The ambiguity thus opens the possibility that the observational results are limited by sampling over the twentieth century and not at odds with the suggested dominance of Pacific Ocean forcing in the model ensembles.

     
    more » « less
  5. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less