skip to main content

Title: Diverse impacts of Indian Ocean Dipole on El Niño-Southern Oscillation
Abstract Understanding the impact of the Indian Ocean Dipole (IOD) on El Niño-Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD-El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles-Chagos thermocline ridge (SCTR; 60°E-85°E and 7°S-15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeast Indian Ocean, which induces La Niña-like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “Warm Pool Dipole”. This study identifies a new pIOD-ENSO relationship and examines the associated mechanisms.
Authors:
; ; ; ; ; ;
Award ID(s):
1935279 1658218
Publication Date:
NSF-PAR ID:
10318587
Journal Name:
Journal of Climate
ISSN:
0894-8755
Sponsoring Org:
National Science Foundation
More Like this
  1. The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on inter-seasonal to inter-annual time scales, and to locate the source of moisture. Seasonal composites during El Niño Southern Oscillation/Indian Ocean Dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies towards Australia. During co-occurring La Niña and negative-IOD events, salty anomalies around the maritime continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, there is the moisture transport divergence anomaly over Australia and results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence andmore »SSS anomaly during the ENSO/IOD events highlights the associated ocean-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g. 2010-11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.« less
  2. Abstract The Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), andmore »it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.« less
  3. Abstract

    Atlantic Niño is the Atlantic equivalent of El Niño-Southern Oscillation (ENSO), and it has prominent impacts on regional and global climate. Existing studies suggest that the Atlantic Niño may arise from local atmosphere-ocean interaction and is sometimes triggered by the Atlantic Meridional Mode (AMM), with overall weak ENSO contribution. By analyzing observational datasets and performing numerical model experiments, here we show that the Atlantic Niño can be induced by the Indian Ocean Dipole (IOD). We find that the enhanced rainfall in the western tropical Indian Ocean during positive IOD weakens the easterly trade winds over the tropical Atlantic, causing warm anomalies in the central and eastern equatorial Atlantic basin and therefore triggering the Atlantic Niño. Our finding suggests that the cross-basin impact from the tropical Indian Ocean plays a more important role in affecting interannual climate variability than previously thought.

  4. Abstract The Indian and Pacific Oceans surround the Maritime Continent (MC). Major modes of sea surface temperature variability in both oceans, including the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO), can strongly affect precipitation on the MC. The prevalence of fires in the MC is closely associated with precipitation amount and terrestrial water storage in September and October. Precipitation and terrestrial water storage, which is a measurement of hydrological drought conditions, are significantly modulated by Indian Ocean Dipole (IOD) and El Niño events. We utilize long-term datasets to study the combined effects of ENSO and the IOD on MC precipitation during the past 100 years (1900–2019) and find that the reductions in MC precipitation and terrestrial water storage are more pronounced during years when El Niño and a positive phase of the IOD (pIOD) coincided. The combined negative effects are produced mainly through an enhanced reduction of upward motion over the MC. Coincident El Niño-pIOD events have occurred more frequently after 1965. However, climate models do not project a higher occurrence of coincident El Niño-pIOD events in a severely warming condition, implying that not the global warming but the natural variability might be the leading cause of this phenomenon.
  5. Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find thatmore »both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions.« less