skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ni 2 P‐Modified Ta 3 N 5 and TaON for Photocatalytic Nitrate Reduction
Abstract Self‐sustaining photocatalytic NO3reduction systems could become ideal NO3removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−N) aqueous solution of NO3, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3reduction to occur on the Ni2P surface.  more » « less
Award ID(s):
1905066
PAR ID:
10155045
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
6
Issue:
8
ISSN:
2199-692X
Format(s):
Medium: X Size: p. 1179-1185
Size(s):
p. 1179-1185
Sponsoring Org:
National Science Foundation
More Like this
  1. Only when the interfacial charge separation is enhanced and the CO 2 activation is improved, can the heterojunction nanocomposite photocatalyst be brought into full play for the CO 2 reduction reaction (CO 2 RR). Here, Er 3+ single atom composite photocatalysts were successfully constructed based on both the special role of Er 3+ single atoms and the special advantages of the SrTiO 3 :Er 3+ /g-C 3 N 4 heterojunction in the field of photocatalysis for the first time. As we expected, the SrTiO 3 :Er 3+ /g-C 3 N 4 (22.35 and 16.90 μmol g −1 h −1 for CO and CH 4 ) exhibits about 5 times enhancement in visible-light photocatalytic activity compared to pure g-C 3 N 4 (4.60 and 3.40 μmol g −1 h −1 for CO and CH 4 ). In particular, the photocatalytic performance of SrTiO 3 :Er 3+ /g-C 3 N 4 is more than three times higher than that of SrTiO 3 /g-C 3 N 4 . From Er 3+ fluorescence quenching measurements, photoelectrochemical studies, transient PL studies and DFT calculations, it is verified that a small fraction of surface doping of Er 3+ formed Er single-atoms on SrTiO 3 building an energy transfer bridge between the interface of SrTiO 3 and g-C 3 N 4 , resulting in enhanced interfacial charge separation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and adsorption energy calculations demonstrated that the exposed Er single-atoms outside the interface on SrTiO 3 preferentially activate the adsorbed CO 2 , leading to the high photoactivity for the CO 2 RR. A novel enhanced photocatalytic mechanism was proposed, in which Er single-atoms play dual roles of an energy transfer bridge and activating CO 2 to promote charge separation. This provides new insights and feasible routes to develop highly efficient photocatalytic materials by engineering rare-earth single-atom doping. 
    more » « less
  2. Abstract Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2evolution performance, especially for the composite 2 with a maximum H2evolution rate of 13.98 mmol g−1 h−1(turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2evolution and beyond. 
    more » « less
  3. Abstract Metal‐halide perovskites have been explored as photocatalysts for CO2reduction. We report that perovskite photocatalytic CO2reduction in organic solvents is likely problematic. Instead, the detected products (i.e., CO) likely result from a photoredox organic transformation involving the solvent. Our observations have been validated using isotopic labeling experiments, band energy analysis, and new control experiments. We designed a typical perovskite photocatalytic setup in organic solvents that led to CO production of up to ≈1000 μmol g−1 h−1. CO2reduction in organic solvents must be studied with extra care because photoredox organic transformations can produce orders of magnitude higher rate of CO or CH4than is typical for CO2reduction routes. Though CO2reduction is not likely to occur, in situ CO generation is extremely fast. Hence a suitable system can be established for challenging organic reactions that use CO as a feedstock but exploit the solvent as a CO surrogate. 
    more » « less
  4. Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N 2 fixation are in the powder form, suffering from agglomeration and difficulty in the collection and leading to unsatisfactory conversion efficiency. Developing efficient film catalysts for N 2 photofixation under ambient conditions remains challenging. Herein, we report the efficient photofixation of N 2 over a periodic WS 2 @TiO 2 nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO 2 nanoporous films through Ar annealing treatment, which plays a vital role in N 2 adsorption and activation. The periodic WS 2 @TiO 2 nanoporous film with an optimized WS 2 content shows highly efficient photocatalytic performance for N 2 fixation with an NH 3 evolution rate of 1.39 mmol g −1 h −1 , representing one of the state-of-the-art catalysts. 
    more » « less
  5. Abstract Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals. 
    more » « less