skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards meaningful physics recognition: What does this recognition actually look like?
Award ID(s):
1720810
PAR ID:
10089351
Author(s) / Creator(s):
Date Published:
Journal Name:
The Physics teacher
Volume:
56
Issue:
7
ISSN:
0031-921X
Page Range / eLocation ID:
442-446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe here the effects of metal complexation on the molecular recognition behavior of cavitands with quinoxaline walls. The nitrogen atoms of the quinoxalines are near the upper rim of the vase-like shape and treatment with Pd(II) gave 2:1 metal:cavitand derivatives. Characterization by 1 H, 13 C NMR spectroscopy, HR ESI-MS, and computations showed that the metals bridged adjacent quinoxaline panels and gave cavitands with C 2v symmetry. Both water-soluble and organic-soluble versions were prepared and their host/guest complexes with alkanes, alcohols, acids, and diols (up to C12) were studied by 1 H NMR spectroscopy. Analysis of the binding behavior indicated that the metals rigidified the walls of the receptive vase conformation and enhanced the binding of hydrophobic and even water-soluble guests, compared to related cavitands reported previously. The results demonstrated that the conformational dynamics of the cavitand were slowed by the coordination of Pd(II) and stabilized the host’s complexes. 
    more » « less