We investigated the flow dynamics of tornado-like vortices, examining the influence of swirl ratio, S, defined as the ratio of tangential to radial momentum at the vortex base, on their structural characteristics. Using a combination of particle image velocimetry (PIV) in a custom-built simulator and large-eddy simulations (LES), we analyzed vortex flows at swirl ratios of S=4.66, 1.25, and 0.33. The results demonstrate that vortex flow characteristics strongly depend on S, with improved agreement between experimental and numerical data when employing flow-based swirl ratio definitions. Vortex wandering was quantified in experiments, and corrections were applied to refine tangential and radial velocity profiles. At S=0.33 and 1.25 in experiments and S=1.25 and 4.66 in simulations, the vortex transitioned from a single-celled to a double-celled structure, with further evolution into multi-celled vortices at the highest swirl ratio, substantially modifying circulation patterns. Proper orthogonal decomposition (POD) characterized the coherent structures governing vortex dynamics and their dependence on swirl ratio, revealing distinct physical features associated with each vortex regime.
more »
« less
Effects of Aspect Ratio on Laboratory Simulation of Tornado-Like Vortices
Experiments were conducted in a large-scale Ward-type tornado simulator to study tornado-like vortices. Both flow velocities and the pressures at the surface beneath the vortices were measured. An interpretation of these measurements enabled an assessment of the mean flow field as well as the mean and fluctuating characteristics of the surface pressure deficit, which is a manifestation of the flow fluctuation aloft. An emphasis was placed on the effect of the aspect ratio of the tornado simulator on the characteristics of the simulated flow and the corresponding surface pressure deficit, especially the evolution of these characteristics due to the transition of the flow from a single-celled vortex to a two-celled vortex with increasing swirl ratio.
more »
« less
- Award ID(s):
- 1663363
- PAR ID:
- 10089489
- Date Published:
- Journal Name:
- Wind and Structures
- Volume:
- 27
- Issue:
- 2
- ISSN:
- 1226-6116
- Page Range / eLocation ID:
- 111-121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The influence of microscale flow structures (smaller than the pore size) on turbulent heat transfer in porous media has not been yet investigated. The goal of this study is to determine the influence of the micro-vortices on convection heat transfer in turbulent porous media flow. Turbulent flow in a homogeneous porous medium was investigated using Large Eddy Simulation (LES) at a Reynolds number of 300. We observed that the convection heat transfer characteristics are dependent on whether the micro-vortices are attached or detached from the surface of the obstacle. There is a spectral correlation between the Nusselt number and the pressure instabilities due to vortex shedding. A secondary flow instability occurs due to high pressure regions forming periodically near the converging pathway between obstacles. This causes local adverse pressure gradient, affecting the flow velocity and convection heat transfer. This study has been performed for obstacles with shapes of square and circular cylinders at porosities of 0.50 and 0.87. Understanding the dominant modes that affect convection heat transfer can aid in finding an optimum geometry for the porous medium.more » « less
-
Abstract Fire-generated tornadic vortices (FGTVs) linked to deep pyroconvection, including pyrocumulonimbi (pyroCbs), are a potentially deadly, yet poorly understood, wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high-impact wildfires during the 2020 fire season in California. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s −1 (60 kt), vortex depths of up to 4.9 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high-reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated mesoscale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form.more » « less
-
On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period.more » « less
-
Abstract Radar and satellite observations document the evolution of a destructive fire‐generated vortex during the Carr fire on 26 July 2018 near Redding, California. The National Weather Service estimated that surface wind speeds in the vortex were in excess of 64 m/s, equivalent to an EF‐3 tornado. Radar data show that the vortex formed within an antecedent region of cyclonic wind shear along the fire perimeter and immediately following rapid vertical development of the convective plume, which grew from 6 to 12 km aloft in just 15 min. The rapid plume development was linked to the release of moist instability in a pyrocumulonimbus (pyroCb). As the cloud grew, the vortex intensified and ascended, eventually reaching an altitude of 5,200 m. The role of the pyroCb in concentrating near‐surface vorticity distinguishes this event from other fire‐generated vortices and suggests dynamical similarities to nonmesocyclonic tornadoes.more » « less
An official website of the United States government

