skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Temporal Resolution Observations of the 27 May 2015 Canadian, Texas, Tornado Using the Atmospheric Imaging Radar
On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period.  more » « less
Award ID(s):
1823478
PAR ID:
10086732
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
3
ISSN:
0027-0644
Page Range / eLocation ID:
p. 873-891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments. Significance StatementAccurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment. 
    more » « less
  2. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1). 
    more » « less
  3. null (Ed.)
    Abstract Rapid-scan polarimetric data analysis of the dissipation of a likely violent supercell tornado that struck near Sulphur, Oklahoma, on 9 May 2016 is presented. The Rapid X-band Polarimetric Radar was used to obtain data of the tornado at the end of its mature phase and during its entire dissipation phase. The analysis is presented in two parts: dissipation characteristics of the tornadic vortex signature (TVS) associated with the tornado and storm-scale polarimetric features that may be related to processes contributing to tornado dissipation. The TVS exhibited near-surface radial velocities exceeding 100 m s−1 multiple times at the end of its mature phase, and then underwent a two-phased dissipation. Initially, decreases in near-surface intensity occurred rapidly over a ~5-min period followed by a slower decline in intensity that lasted an additional ~12 min. The dissipation of the TVS in time and height in the lowest 2 km above radar level and oscillatory storm-relative motion of the TVS also are discussed. Using polarimetric data, a well-defined low reflectivity ribbon is investigated for its vertical development, evolution, and relationship to the large tornadic debris signature (TDS) collocated with the TVS. The progression of the TDS during dissipation also is discussed with a focus on the presence of several bands of reduced copolar correlation coefficient that extend away from the main TDS and the eventual erosion of the TDS as the tornado dissipated. Finally, TVS and polarimetric data are combined to argue for the importance of a possible internal rear-flank downdraft momentum surge in contributing to the initial rapid dissipation of the tornado. 
    more » « less
  4. null (Ed.)
    Abstract On 24 May 2016, a supercell that produced 13 tornadoes near Dodge City, Kansas, was documented by a rapid-scanning, X-band, polarimetric, Doppler radar (RaXPol). The anomalous nature of this storm, particularly the significant deviations in storm motion from the mean flow and number of tornadoes produced, is examined and discussed. RaXPol observed nine tornadoes with peak radar-derived intensities (Δ V max ) and durations ranging from weak (~60 m s −1 ) and short lived (<30 s) to intense (>150 m s −1 ) and long lived (>25 min). This case builds on previous studies of tornado debris signature (TDS) evolution with continuous near-surface sampling of multiple strong tornadoes. The TDS sizes increased as the tornadoes intensified but lacked direct correspondence to tornado intensity otherwise. The most significant growth of the TDS in both cases was linked to two substantial rear-flank-downdraft surges and subsequent debris ejections, resulting in growth of the TDSs to more than 3 times their original sizes. The TDS was also observed to continue its growth as the tornadoes decayed and lofted debris fell back to the surface. The TDS size and polarimetric composition were also found to correspond closely to the underlying surface cover, which resulted in reductions in Z DR in wheat fields and growth of the TDS in terraced dirt fields as a result of ground scouring. TDS growth with respect to tornado vortex tilt is also discussed. 
    more » « less
  5. null (Ed.)
    Abstract This study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions ( w > 0.5 m s −1 ). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC. The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low–equivalent potential temperature, negative-buoyancy air left of shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less