skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deprotonated carbohydrate anion fragmentation chemistry: structural evidence from tandem mass spectrometry, infra-red spectroscopy, and theory
We investigate the gas-phase structures and fragmentation chemistry of deprotonated carbohydrate anions using combined tandem mass spectrometry, infrared spectroscopy, regioselective labelling, and theory. Our model system is deprotonated, [lactose-H] − . We computationally characterize the rate-determining barriers to glycosidic bond (C 1 –Z 1 reactions) and cross-ring cleavages, and compare these predictions to our tandem mass spectrometric and infrared spectroscopy data. The glycosidic bond cleavage product data support complex mixtures of anion structures in both the C 1 and Z 1 anion populations. The specific nature of these distributions is predicted to be directly affected by the nature of the anomeric configuration of the precursor anion and the distribution of energies imparted. i.e. , Z 1 anions produced from the β-glucose anomeric form have a differing distribution of product ion structures than do those from the α-glucose anomeric form. The most readily formed Z 1 anions ([1,4-anhydroglucose-H] − structures) are produced from the β-glucose anomers, and do not ring-open and isomerize as the hemiacetal group is no longer present. In contrast the [3,4-anhydroglucose-H] − , Z 1 anion structures, which are most readily produced from α-glucose forms, can ring-open through very low barriers (<25 kJ mol −1 ) to form energetically and entropically favorable aldehyde isomers assigned with a carbonyl stretch at ∼1640 cm −1 . Barriers to interconversion of the pyranose [β-galactose-H] − , C 1 anions to ring-open forms were larger, but still modest (≥51 kJ mol −1 ) consistent with evidence of the presence of both forms in the infrared spectrum. For the cross-ring cleavage 0,2 A 2 anions, ring-opening at the glucose hemiacetal of [lactose-H] − is rate-limiting (>180 (α-), >197 kJ mol −1 (β-anomers)). This finding offers an explanation for the low abundance of these product anions in our tandem mass spectra.  more » « less
Award ID(s):
1808394
PAR ID:
10089631
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
44
ISSN:
1463-9076
Page Range / eLocation ID:
27897 to 27909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Glycoside hydrolase enzymes are important for hydrolyzing the β-1,4 glycosidic bond in polysaccharides for deconstruction of carbohydrates. The two-step retaining reaction mechanism of Glycoside Hydrolase Family 7 (GH7) was explored with different sized QM-cluster models built by the Residue Interaction Network ResidUe Selector (RINRUS) software using both the wild-type protein and its E217Q mutant. The first step is the glycosylation, in which the acidic residue 217 donates a proton to the glycosidic oxygen leading to bond cleavage. In the subsequent deglycosylation step, one water molecule migrates into the active site and attacks the anomeric carbon. Residue interaction-based QM-cluster models lead to reliable structural and energetic results for proposed glycoside hydrolase mechanisms. The free energies of activation for glycosylation in the largest QM-cluster models were predicted to be 19.5 and 31.4 kcal mol −1 for the wild-type protein and its E217Q mutant, which agree with experimental trends that mutation of the acidic residue Glu217 to Gln will slow down the reaction; and are higher in free energy than the deglycosylation transition states (13.8 and 25.5 kcal mol −1 for the wild-type protein and its mutant, respectively). For the mutated protein, glycosylation led to a low-energy product. This thermodynamic sink may correspond to the intermediate state which was isolated in the X-ray crystal structure. Hence, the glycosylation is validated to be the rate-limiting step in both the wild-type and mutated enzyme. 
    more » « less
  2. Peptidoglycans are diverse co- and post-translational modifications of key importance in myriad biological processes. Mass spectrometry is employed to infer their biomolecular sequences and stereochemisties, but little is known about the critical gas-phase dissociation processes involved. Here, using tandem mass spectrometry (MS/MS and MS n ), isotopic labelling and high-level simulations, we identify and characterize a facile isomerization reaction that produces furanose N-acetylated ions. This reaction occurs for both O- and N-linked peptidoglycans irrespective of glycosidic linkage stereochemistry (α/β). Dissociation of the glycosidic and other bonds thus occur from the furanose isomer critically altering the reaction feasibility and product ion structures. 
    more » « less
  3. Anions formed by the perhalobenzene series C$$_6$$Cl$$_{n}$$F$$_{6-n}$$ ($n=0-6$) are studied computationally. All members of the series form both stable valence and stable non-valence anions. At the geometry of the neutral parents, only non-valence anions are bound, and the respective vertical electron affinities show values in the $20$ to $60$meV range. Valence anions show distorted non-planar structures, and one can distinguish two types of conformers. A-type conformers show puckered-ring structures and excess electrons delocalized over several C-Cl bonds [in case of C$$_6$$F$$_6^-$$, C-F bonds], while B-type conformers possess excess electrons essentially localized in a single C-Cl bond, which is accordingly strongly stretched and bent out-of-plane. For a specific anion, all conformers are close in energy (relative energies of less than $10$kJ/mol) and are connected by low-lying transition states. Accordingly, A-type and B-type conformers possess similar adiabatic electron affinities, however, their vertical detachment energies exhibit drastically different values, which should ease conformer distinction in photoelectron spectroscopy. 
    more » « less
  4. D-Mannosamine hydrochloride (2-amino-2-deoxy-D-mannose hydrochloride), C 6 H 14 NO 5 + ·Cl − , (I), crystallized from a methanol/ethyl acetate/ n -hexane solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C3,O5 B form. A comparison of the structural parameters of (I) with the corresponding parameters in α-D-glucosamine hydrochloride, (II), and β-D-galactosamine hydrochloride, (III)/(III′), was undertaken to evaluate the effects of ionic hydrogen bonding on structural properties. Three types of ionic hydrogen bonds are present in the crystals of (I)–(III)/(III′), i.e. N + —H...O, N + —H...Cl − , and O—H...Cl − . The exocyclic structural parameters in (I), (II), and (III)/(III′) appear to be most influenced by this bonding, especially the exocyclic hydroxy groups, which adopt eclipsed conformations enabled by ionic hydrogen bonding to the chloride anion. Anomeric disorder was observed in crystals of (I), with an α:β ratio of 37:63. However, anomeric configuration appears to exert minimal structural effects; that is, bond lengths, bond angles, and torsion angles are essentially identical in both anomers. The observed disorder at the anomeric C atom of (I) appears to be caused by the presence of the chloride anion and atom O3 or O4 in proximal voids, which provide opportunities for hydrogen bonding to atom O1 in both axial and equatorial orientations. 
    more » « less
  5. Secondary organic aerosol (SOA) is a significant component of atmospheric fine particulate matter (PM2.5) globally that can form through multiphase chemistry of oxidized volatile organic compounds (VOC) leading to lower‐volatility particulate species. Condensed phase reactions of certain SOA constituents with inorganic sulfate derived from SO2 oxidation will lead to the formation of organosulfates, which can account for up to 10 – 15% of the organic mass within PM2.5. Despite the ubiquitous presence of atmospheric fine particulate organosulfates, our fundamental understanding of the molecular structure of organosulfates is limited, including for 2‐methyltetrol organosulfates (2‐MTSs), which are typically the single most abundant organosulfates measured in PM2.5, formed from isoprene oxidation products. As atmospheric aerosol pH varies widely (0 – 6), it is important to know whether organosulfates exist primarily in their protonated (ROSO3H) or deprotonated (ROSO3 ‐) forms. In this study, vibrational modes of synthetically‐pure 2‐MTSs were spectroscopically probed using Raman and infrared (IR) spectroscopies, supported by density functional theory (DFT) of the protonated and deprotonated structures. Vibrational bands at 1035 and 1059 cm‐1 were seen in both the IR and Raman spectra, and were associated with the ROSO3 ‐ anion by comparison to DFT calculations. Analysis of Raman spectra across a range of acidities (pH = 0 – 10) shows that 2‐MTSs are deprotonated (ROSO3 ‐) at those pH values. Additional DFT calculations for organosulfates derived from isoprene, α‐pinene, β‐caryophyllene, and toluene suggest that most organosulfates exist in their deprotonated form (ROSO3 ‐) in atmospheric particles. These charged species may have significant implications for our understanding of aerosol acidity and should be considered in thermodynamic model calculations. 
    more » « less