skip to main content

Title: D -Mannosamine hydrochloride (2-amino-2-deoxy- D -mannose hydrochloride): ionic hydrogen bonding in saccharides involving chloride and aminium ions
D-Mannosamine hydrochloride (2-amino-2-deoxy-D-mannose hydrochloride), C 6 H 14 NO 5 + ·Cl − , (I), crystallized from a methanol/ethyl acetate/ n -hexane solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C3,O5 B form. A comparison of the structural parameters of (I) with the corresponding parameters in α-D-glucosamine hydrochloride, (II), and β-D-galactosamine hydrochloride, (III)/(III′), was undertaken to evaluate the effects of ionic hydrogen bonding on structural properties. Three types of ionic hydrogen bonds are present in the crystals of (I)–(III)/(III′), i.e. N + —H...O, N + —H...Cl − , and O—H...Cl − . The exocyclic structural parameters in (I), (II), and (III)/(III′) appear to be most influenced by this bonding, especially the exocyclic hydroxy groups, which adopt eclipsed conformations enabled by ionic hydrogen bonding to the chloride anion. Anomeric disorder was observed in crystals of (I), with an α:β ratio of 37:63. However, anomeric configuration appears to exert minimal structural effects; that is, bond lengths, bond angles, and torsion angles are essentially identical in both anomers. The observed disorder at the anomeric C atom of (I) appears to be caused by the presence of the chloride anion and atom O3 or more » O4 in proximal voids, which provide opportunities for hydrogen bonding to atom O1 in both axial and equatorial orientations. « less
Authors:
; ;
Award ID(s):
2002625
Publication Date:
NSF-PAR ID:
10329761
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
78
Issue:
4
Page Range or eLocation-ID:
223 to 230
ISSN:
2053-2296
Sponsoring Org:
National Science Foundation
More Like this
  1. Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.
  2. The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C 15 H 27 NO 11 ·H 2 O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N -acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N -acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis – trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O -glycosidic linkages on linkage torsion angles ϕ and ψ. Hypersurfaces correlating ϕ and ψ with the linkage C—O—C bond anglemore »and total energy are sufficiently similar to render the former a proxy of the latter.« less
  3. The crystal structures of 2,3,4,6-tetra- O -benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri- O -benzoyl-β-D-glucopyranose ethyl acetate hemisolvate, C 61 H 50 O 18 ·0.5C 4 H 8 O 2 , and 1,2,4,6-tetra- O -benzoyl-β-D-glucopyranose acetone monosolvate, C 34 H 28 O 10 ·C 3 H 6 O, were determined and compared to those of methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (methyl β-lactoside) and methyl β-D-glucopyranoside hemihydrate, C 7 H 14 O 6 ·0.5H 2 O, to evaluate the effects of O -benzoylation on bond lengths, bond angles and torsion angles. In general, O -benzoylation exerts little effect on exo- and endocyclic C—C and endocyclic C—O bond lengths, but exocyclic C—O bonds involved in O -benzoylation are lengthened by 0.02–0.04 Å depending on the site of substitution. The conformation of the O -benzoyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H—C—H bond angle of an 1°-alcoholic C atom. Of the three bonds that determine the side-chain geometry, the C—O bond involving the alcoholic C atom exhibits greater rotational variability than the remaining C—O and C—C bonds involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of the O -acetylmore »side-chain conformation in saccharides.« less
  4. Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 H 21 N 3 O)(CH 3 OH)](C 24 H 20 B)·CH 3 OH or [Mn(DQEA)(OAc)(CH 3 OH)]BPh 4 ·CH 3 OH or [2] BPh 4 ·CH 3 OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to Mn II ions. In the asymmetric unit, compound [1] (BPh 4 ) 2 ·(CH 2 Cl 2 ) 1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitrogen, the nitrogen atom of each quinoline group, and the methoxy-oxygen of the tetradentate DQMEA ligand, and two bridging-acetatemore »oxygen atoms. The symmetric Mn II centers have a distorted, octahedral geometry in which the quinoline nitrogen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each Mn II center, a coordinated acetate oxygen participates in C—H...O hydrogen-bonding interactions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak π – π stacking interactions and intermolecular cation–anion interactions stabilize the crystal packing. In the asymmetric unit, compound [2] BPh 4 ·CH 3 OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitrogen, the nitrogen atom of each quinoline group, and the alcohol oxygen of the tetradentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the Mn II center in [2] BPh 4 ·CH 3 OH is also a distorted octahedron, but the quinoline nitrogen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H...O) and quinolyl (C—H...O and N—H...O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of intermolecular O3—H3...O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and intermolecular cation–anion interactions contribute to the crystal packing.« less
  5. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical tomore »the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I).« less