skip to main content


Title: The Complexity of Making the Gradient Small in Stochastic Convex Optimization
We give nearly matching upper and lower bounds on the oracle complexity of finding ϵ-stationary points (∥∇F(x)∥≤ϵ in stochastic convex optimization. We jointly analyze the oracle complexity in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us to decompose the complexity of finding near-stationary points into optimization complexity and sample complexity, and reveals some surprising differences between the complexity of stochastic optimization versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity between the two models can be exponential, and the folklore understanding that smoothness is required to find stationary points is only weakly true for statistical learning. Our upper bounds are based on extensions of a recent “recursive regularization” technique proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in particular show how to leverage the extra information available in the global oracle model. Our algorithm for the global model can be implemented efficiently through finite sum methods, and suggests an interesting new computational-statistical tradeoff  more » « less
Award ID(s):
1718970
PAR ID:
10089724
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
99
ISSN:
2640-3498
Page Range / eLocation ID:
1319-1345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (δ,ϵ)-stationary point from O(ϵ^(-4),δ^(-1)) stochastic gradient queries to O(ϵ^(-3),δ^(-1)), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(ϵ^(-1.5),δ^(-0.5)). Our techniques also recover all optimal or best-known results for finding ϵ stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings. 
    more » « less
  2. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $x$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $O(\epsilon)$-estimate of the lower-level solution, in addition to first-order gradient estimators {\it locally unbiased} within the $\Theta(\epsilon)$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $\epsilon$ stationary point using $O(\epsilon^{-6}), O(\epsilon^{-4})$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $O(\epsilon)$ with minimal assumptions. We then provide the matching $\Omega(\epsilon^{-6})$, $\Omega(\epsilon^{-4})$ lower bounds without and with an additional smoothness assumption on $y^*$-aware oracles, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  3. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $x$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $O(\epsilon)$-estimate of the lower-level solution, in addition to first-order gradient estimators locally unbiased within the $\Theta(\epsilon)$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $\epsilon$ stationary point using $O(\epsilon^{-6}), O(\epsilon^{-4})$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $O(\epsilon)$ with minimal assumptions. We then provide the matching $\Omega(\epsilon^{-6})$, $\Omega(\epsilon^{-4})$ lower bounds without and with an additional smoothness assumption, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  4. null (Ed.)
    The use of min-max optimization in the adversarial training of deep neural network classifiers, and the training of generative adversarial networks has motivated the study of nonconvex-nonconcave optimization objectives, which frequently arise in these applications. Unfortunately, recent results have established that even approximate first-order stationary points of such objectives are intractable, even under smoothness conditions, motivating the study of min-max objectives with additional structure. We introduce a new class of structured nonconvex-nonconcave min-max optimization problems, proposing a generalization of the extragradient algorithm which provably converges to a stationary point. The algorithm applies not only to Euclidean spaces, but also to general ℓ𝑝-normed finite-dimensional real vector spaces. We also discuss its stability under stochastic oracles and provide bounds on its sample complexity. Our iteration complexity and sample complexity bounds either match or improve the best known bounds for the same or less general nonconvex-nonconcave settings, such as those that satisfy variational coherence or in which a weak solution to the associated variational inequality problem is assumed to exist. 
    more » « less
  5. null (Ed.)
    We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f : R n → R , our quantum algorithm outputs an ϵ -approximate second-order stationary point using O ~ ( log 2 ⁡ ( n ) / ϵ 1.75 ) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O ~ ( log 6 ⁡ ( n ) / ϵ 1.75 ) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of log ⁡ n and matches its complexity in terms of 1 / ϵ . Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with log ⁡ n factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings. 
    more » « less