skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Complexity of Making the Gradient Small in Stochastic Convex Optimization
We give nearly matching upper and lower bounds on the oracle complexity of finding ϵ-stationary points (∥∇F(x)∥≤ϵ in stochastic convex optimization. We jointly analyze the oracle complexity in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us to decompose the complexity of finding near-stationary points into optimization complexity and sample complexity, and reveals some surprising differences between the complexity of stochastic optimization versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity between the two models can be exponential, and the folklore understanding that smoothness is required to find stationary points is only weakly true for statistical learning. Our upper bounds are based on extensions of a recent “recursive regularization” technique proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in particular show how to leverage the extra information available in the global oracle model. Our algorithm for the global model can be implemented efficiently through finite sum methods, and suggests an interesting new computational-statistical tradeoff  more » « less
Award ID(s):
1718970
PAR ID:
10089724
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
99
ISSN:
2640-3498
Page Range / eLocation ID:
1319-1345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (δ,ϵ)-stationary point from O(ϵ^(-4),δ^(-1)) stochastic gradient queries to O(ϵ^(-3),δ^(-1)), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(ϵ^(-1.5),δ^(-0.5)). Our techniques also recover all optimal or best-known results for finding ϵ stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings. 
    more » « less
  2. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $$x$$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $$O(\epsilon)$$-estimate of the lower-level solution, in addition to first-order gradient estimators {\it locally unbiased} within the $$\Theta(\epsilon)$$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $$\epsilon$$ stationary point using $$O(\epsilon^{-6}), O(\epsilon^{-4})$$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $$O(\epsilon)$$ with minimal assumptions. We then provide the matching $$\Omega(\epsilon^{-6})$$, $$\Omega(\epsilon^{-4})$$ lower bounds without and with an additional smoothness assumption on $y^*$-aware oracles, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  3. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $$x$$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $$O(\epsilon)$$-estimate of the lower-level solution, in addition to first-order gradient estimators locally unbiased within the $$\Theta(\epsilon)$$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $$\epsilon$$ stationary point using $$O(\epsilon^{-6}), O(\epsilon^{-4})$$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $$O(\epsilon)$$ with minimal assumptions. We then provide the matching $$\Omega(\epsilon^{-6})$$, $$\Omega(\epsilon^{-4})$$ lower bounds without and with an additional smoothness assumption, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  4. Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with a warm start strategy finds an ϵ-approximate local minimum of bilevel optimization in $$\tilde O(\epsilon^{-2})$$ iterations with high probability. Moreover, we propose an inexact NEgative-curvature-Originated-from-Noise Algorithm (iNEON), an algorithm that can escape saddle point and find local minimum of stochastic bilevel optimization. As a by-product, we provide the first nonasymptotic analysis of perturbed multi-step gradient descent ascent (GDmax) algorithm that converges to local minimax point for minimax problems. 
    more » « less
  5. Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) for stochastic convex optimization under favorable geometry, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal in terms of finding a near-stationary point with respect to the l2-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the l1-norm of the gradient as the stationarity measure, as opposed to the standard l2-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the l1-norm stationarity measure, we establish an upper bound on the convergence rate of AdaGrad and a corresponding lower bound for SGD. In particular, we identify non-convex settings in which the iteration complexity of AdaGrad is favorable over SGD and show that, for certain configurations of problem parameters, it outperforms SGD by a factor of d, where d is the problem dimension. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions. 
    more » « less