skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lagrangian Transport by Nonbreaking and Breaking Deep-Water Waves at the Ocean Surface
Using direct numerical simulations (DNS), Deike et al. found that the wave-breaking-induced mass transport, or drift, at the surface for a single breaking wave scales linearly with the slope of a focusing wave packet, and may be up to an order of magnitude larger than the prediction of the classical Stokes drift. This model for the drift due to an individual breaking wave, together with the statistics of wave breaking measured in the field, are used to compute the Lagrangian drift of breaking waves in the ocean. It is found that breaking may contribute up to an additional 30% to the predicted values of the classical Stokes drift of the wave field for the field experiments considered here, which have wind speeds ranging from 1.6 to 16 m s−1, significant wave heights in the range of 0.7–4.7 m, and wave ages (defined here as cm/ u*, for the spectrally weighted phase velocity cmand the wind friction velocity u*) ranging from 16 to 150. The drift induced by wave breaking becomes increasingly more important with increasing wind friction velocity and increasing significant wave height.  more » « less
Award ID(s):
1634289
PAR ID:
10089737
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
49
Issue:
4
ISSN:
0022-3670
Page Range / eLocation ID:
p. 983-992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface. 
    more » « less
  2. We investigate wind wave growth by direct numerical simulations solving for the two-phase Navier–Stokes equations. We consider the ratio of the wave speed $$c$$ to the wind friction velocity $$u_*$$ from $$c/u_*= 2$$ to 8, i.e. in the slow to intermediate wave regime; and initial wave steepness $ak$ from 0.1 to 0.3; the two being varied independently. The turbulent wind and the travelling, nearly monochromatic waves are fully coupled without any subgrid-scale models. The wall friction Reynolds number is 720. The novel fully coupled approach captures the simultaneous evolution of the wave amplitude and shape, together with the underwater boundary layer (drift current), up to wave breaking. The wave energy growth computed from the time-dependent surface elevation is in quantitative agreement with that computed from the surface pressure distribution, which confirms the leading role of the pressure forcing for finite amplitude gravity waves. The phase shift and the amplitude of the principal mode of surface pressure distribution are systematically reported, to provide direct evidence for possible wind wave growth theories. Intermittent and localised airflow separation is observed for steep waves with small wave age, but its effect on setting the phase-averaged pressure distribution is not drastically different from that of non-separated sheltering. We find that the wave form drag force is not a strong function of wave age but closely related to wave steepness. In addition, the history of wind wave coupling can affect the wave form drag, due to the wave crest shape and other complex coupling effects. The normalised wave growth rate we obtain agrees with previous studies. We make an effort to clarify various commonly adopted underlying assumptions, and to reconcile the scattering of the data between different previous theoretical, numerical and experimental results, as we revisit this longstanding problem with new numerical evidence. 
    more » « less
  3. Sophisticated measurements of fluid velocity near to an undulating air–water boundary have traditionally been confined to the laboratory setting. Developments in camera technology and the opening of novel modes of analysis have allowed for sensitive measurements of the current profile in the ocean’s uppermost layer. Taking advantage of the Research Platform R/P FLIP as a ‘laboratory at sea’, here we present first-of-their-kind thermal and polarimetric camera-based observations of wave orbital velocities and mean shear flows in the upper centimetres of the ocean surface layer. Measurements reveal a well-defined logarithmic layer as seen in laboratory measurements and described by classical surface layer theory; however, substantial spread of observations is found at low levels of wind forcing, where the Stokes drift of swell may have a substantial impact on the near-surface current profile. A novel application of short time window Fourier transforms allows for the estimation of near-surface wave orbital velocity magnitudes. These are found to be in general agreement with the prescriptions of linear wave theory, although observations diverge from theory at high levels of wind forcing where the interface is subject to surface wave breaking. Finally, the surface gravity wave phase-coherent short wave growth is presented and discussed in the context of hydrodynamic wave and airflow modulation. 
    more » « less
  4. Abstract Vertical transport of heat and atmospheric constituents by gravity waves plays a crucial role in shaping the thermal and constituent structure of the middle atmosphere. We show that atmospheric mixing by non‐breaking waves can be described as a diffusion process where the potential temperature (KH) and constituent (KWave) diffusivities depend on the compressibility of the wave fluctuations and the vertical Stokes drift imparted to the atmosphere by the wave spectrum. KHand KWaveare typically much larger than the eddy diffusivity (Kzz), arising from the turbulence generated by breaking waves, and can exceed several hundred m2s−1in regions of strong wave dissipation. We also show that the total diffusion of heat and constituents caused by waves, turbulence, and the thermal motion of molecules, is enhanced in the presence of non‐breaking waves by a factor that is proportional to the variance of the wave‐driven lapse rate fluctuations. Diffusion enhancements of both heat and constituents of 50% or more can be experienced in regions of low atmospheric stability, where the lapse rate fluctuations are large. These important transport effects are not currently included in most global chemistry‐climate models, which typically only consider the eddy diffusion that is induced when the unresolved, but parameterized waves, experience dissipation. We show that the theoretical results compare favorably with observations of the mesopause region at midlatitudes and describe how the theory may be used to more fully account for the unresolved wave transport in global models. 
    more » « less
  5. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less