National reports have indicated colleges and universities need to increase the number of students graduating with engineering degrees to meet anticipated job openings in the near-term future. Fields like engineering are critical to the nation’s economic strength and competitiveness globally, and engineering expertise is needed to solve society’s most pressing problems. Yet only about 40% of students who aspire to an engineering degree follow the path to complete one, and an even smaller percentage of those students continue into an engineering career. Underlying students’ motivation to transform their engineering interest into an engineering career is the psychological construct of engineering identity. Engineering identity reflects the extent to which a person identifies with being an engineer. Previous research has focused on experiences or interventions that promote engineering identity, and some qualitative work has suggested students who are retained in engineering experience differences in engineering identity, but little research has tested the relationship between retention and engineering identity, especially modeling change in engineering identity over four years of college. The data for this study were taken from the 2013 College Senior Survey (CSS), administered to students at the end of their fourth year of college by the Cooperative Institutional Research Program (CIRP) at the Higher Education Research Institute at UCLA. Students’ responses to CSS items were then matched to their responses to the Freshman Survey (TFS), also administered by CIRP, at the very beginning of their first year of college. For this study, all students who indicated their intended major as engineering at the start of college constituted the sample, which included 1205 students at 72 universities. The dependent variable is a dichotomous variable indicating if students marked engineering as their major at the end of the fourth year of college. The main independent variable of interest in this study is engineering identity. Engineering identity was computed using exploratory factor analysis with three items from the CSS indicating the importance to students of becoming an authority in their chosen field, being recognized for contributions to their field, and making theoretical contributions to science. Hierarchical generalized linear modeling with robust standard errors was used to model engineering retention as the dependent variable was dichotomous in nature and the data were “nested” in structure (students nested within universities). Control variables include a pretest of engineering identity from the TFS, college experiences known to predict retention and other outcomes in engineering, demographic variables, precollege academic preparation, choice of engineering major, academic and social self-concept at college entry, and institutional characteristics. In the final model, engineering identity was a significant predictor of engineering retention, controlling for all other factors including the engineering identity pretest.
more »
« less
Exploring the Relationship Between Students’ Engineering Identity and Leadership Self-Efficacy
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy.
more »
« less
- Award ID(s):
- 1664231
- PAR ID:
- 10167752
- Date Published:
- Journal Name:
- American Society for Engineering Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The process of becoming an engineer is fundamentally an identity development process and students who identify as engineers are more likely both to graduate and to enter the field upon graduation. Therefore an opportunity in engineering education is providing undergraduates experiences that bolster their sense of identity as engineers. In particular, experiences that offer authentic engagement in engineering work should be expected to promote engineering identity. This paper tests the relationship between collegiate experiences expected to promote engineering identity formation with change in engineering identity in a national sample of 918 engineering students using data from the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS) to create a longitudinal sample. Engineering identity is measured using a composite of items available in both surveys to assess change in engineering identity over four years, and intention to pursue an engineering career is also tested. Results show participation in undergraduate research appears to increase engineering identity, while participation in an internship increases likelihood of pursuing an engineering career.more » « less
-
The purpose of this work in progress research paper is to examine the differences in leadership self-efficacy among engineering undergraduates and their peers in other fields, and understand how leadership self-concept changes from the first through the fourth year of college. This study conceptualizes engineering formation as a professional identity development process, cultivated through participation in engineering communities of practice. The guiding hypothesis is that experiences that contribute to engineering identity, which focus on the development of technical mastery, conflict with the development of leadership self-concept. This work presents preliminary analysis of the differences between engineering undergraduates and their peers with regard to their leadership experiences during college. Preliminary results reveal a complex picture of the differences between engineering students and their peers in other STEM and non-STEM fields. Engineering students have the highest leadership self-efficacy of all three groups by the end of the fourth year of college, which mirrors differences in self-rated leadership skills at college entry. However, differences in leadership experiences during college vary among these three groups, and not consistently with their leadership self-efficacy. Engineers are least likely to participate in a leadership training during college and to value becoming a leader after college. Among engineering students, students who participate in internships, undergraduate research, and collaborate with peers report higher leadership. Leadership is unrelated to plans to enter engineering as a career.more » « less
-
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes.more » « less
-
The research and evaluation team of an S-STEM project at a large, research-intensive Southeastern public university conducted a cross-sectional survey as a first step to compare factors which may influence undergraduate student persistence in engineering and computing. All engineering and computing students were invited to participate in the survey, and 282 (10.4%) provided responses. The respondents included 15 high financial need students who were participating in the S-STEM program, of which 7 were first-year students and 8 were sophomores. The remaining 267 respondents were undergraduates ranging from first-year to seniors. Survey questions were adapted from previously developed instruments on self-efficacy, sense-of-belonging, identity, community involvement, and overall college experience. Additional questions related to stress levels, academic life, use and effectiveness of academic supports, and the impacts of COVID-19 on their college experiences. The team compared responses by level of academic progression, declared major, gender, and race/ethnicity. Student responses showed a variety of similarities and differences between subgroups. Overall, the students said that they often attended lectures (in-person or online) and came to class prepared. At the same time, students rated these activities as the least effective academic supports. On the other hand, the students rated working assigned or extra homework problems and studying for exams as their most effective activities. Consistently among the subgroups, the students said their community involvement and identity as developing engineers were relatively low while self-efficacy and team self-efficacy were seen as stronger personal skills. The students said they were highly stressed about their grades and academic success in general, and about finances and future careers. They reported feeling less stress about aspects such as living away from home and negotiating the university social scene. Students reported spending the most time preparing for class in their first year compared to students in later years. Female students (104 responses) reported higher levels of community involvement, engineering identity, and engagement in college life compared to male students (142 responses) while there was little gender-related difference in self-efficacy and sense of belonging. Levels of self-efficacy and team self-efficacy did not show large differences based on year in college. Interestingly, first-year students expressed the highest levels of engineering identity while senior students the lowest. Senior students reported the lowest community involvement, sense of belonging, and engineering identity compared to other students. Overall, students from different races self-reported the same levels of self-efficacy. Black/African American students reported the highest levels of community involvement, college life, and identity. There were no substantial differences in self-efficacy among the different engineering and computing majors. This study is a first step in analysis of the students’ input. In addition to surveying the students, the team also conducted interviews of the participating S-STEM students, and analysis of these interviews will provide greater depth to interpretation of the survey results. Overall, the research and evaluation team’s intention is to provide insight to the project’s leadership in how best to support the success of first-year engineering and computing students. https://peer.asee.org/student-persistence-factors-for-engineering-and-computing-undergraduatesmore » « less
An official website of the United States government

