Silver–NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the application of silver–NHCs in catalysis is underdeveloped, particularly when compared to their group 11 counterparts, gold–NHCs (Au–NHC) and copper–NHCs (Cu–NHC). In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application of silver–NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies show the significant promise of silver–NHC complexes as unique and highly selective catalysts in this class of reactions. The review covers p-activation reactions catalyzed by Ag–NHCs since 2005 (the first example of p-activation in catalysis by Ag–NHCs) through December 2022. The review focuses on the structure of NHC ligands and p-functionalization methods, covering the following broadly defined topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions. By discussing the role of Ag–NHC complexes in the p-functionalization of alkynes, the reader is provided with an overview of this important area of research and the role of Ag–NHCs to promote reactions that are beyond other group 11 metal–NHC complexes.
more »
« less
The importance of N-heterocyclic carbene basicity in organocatalysis
N-Heterocyclic carbenes (NHCs) are versatile species that figure prominently as catalysts. Despite their widespread use in organocatalysis, studies of the relationship between the basicity of NHCs and their catalytic ability are limited. Herein we review work on both the examination of NHC basicity as well as its impact on organocatalysis. The review is divided into three main parts: an overview of NHC basicity studies, both in solution and in the gas phase; the role of basicity in Umpolung -type catalysis; and the relationship between NHC basicity and its growing role as a Brønsted base catalyst. This review is not an exhaustive catalog of all NHC catalysis, but rather focuses on work that specifically examines and discusses the effect of NHC basicity on catalyst function.
more »
« less
- Award ID(s):
- 1761151
- PAR ID:
- 10090131
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 16
- Issue:
- 37
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 8230 to 8244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract N‐Heterocyclic carbenes (NHCs) are powerful organocatalysts, but practical applications often require in situ generation from stable precursors that “mask” the NHC reactivity via reversible binding. Previously established “masks” are often simple small molecules, such that the NHC structure is used to control both catalytic activity and activation temperature, leading to undesirable tradeoffs. Herein, we show that NHC‐carbodiimide (CDI) adducts can be masked precursors for switchable organocatalysis and that the CDI substituents can control the reaction profile without changing the NHC structure. Large electronic variations on the CDI (e.g., alkyl versus aryl) drastically change the catalytically active temperature, whereas smaller perturbations (e.g., differentpara‐substituted phenyls) tune the catalyst release within a narrower window. This control was demonstrated for three classic NHC‐catalyzed reactions, each influencing the NHC‐CDI equilibrium in different ways. Our results introduce a new paradigm for controlling NHC organocatalysis as well as present practical considerations for designing appropriate masks for various reactions.more » « less
-
The discovery of N-heterocyclic carbenes (NHCs) revolutionized organometallic chemistry due to their strong metal–ligand bonds. These strong bonds also lend enhanced stability to gold surfaces and nanoparticles. This stability and high degree of synthetic tunability has allowed NHCs to supplant thiols as the ligand of choice when functionalizing gold surfaces. This review article summarizes the basic science and applications of NHCs on gold surfaces and gold nanoparticles. Additionally, scientific questions that are unique to gold–NHC systems are discussed, such as the NHC adatom binding motif and the NHC surface mobility. Finally, new applications for NHCs on gold are covered with particular attention to biomedicine, catalysis, and microelectronics.more » « less
-
Abstract The discovery of NHCs (NHC = N‐heterocyclic carbenes) as ancillary ligands in transition‐metal‐catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well‐recognized that the strong σ‐donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N‐wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well‐established, recently tremendous progress has been made in the development and catalytic applications of BIAN‐NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN‐NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN‐NHC ligands take advantage of (1) the stronger σ‐donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π‐system, (4) the rigid backbone that pushes the N‐wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air‐stability of BIAN‐NHC‐metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross‐coupling and C−H activation endeavors.more » « less
-
We report the synthesis, characterization and reactivity of an air-stable, well-defined acenaphthoimidazolylidene palladium–BIAN–NHC chloro dimer complex, [Pd(BIAN–IPr)(μ-Cl)Cl] 2 . This rapidly activating catalyst merges the reactive properties of palladium chloro dimers, [Pd(NHC)(μ-Cl)Cl] 2 , with the attractive structural features of the BIAN framework. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 is the most reactive Pd( ii )–NHC precatalyst discovered to date undergoing fast activation under both an inert atmosphere and aerobic conditions. The catalyst features bulky-yet-flexible sterics that render the C–H substituents closer to the metal center in combination with rapid dissociation to monomers and strong σ-donor properties. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 should be considered as a catalyst for reactions using well-defined Pd( ii )–NHCs.more » « less
An official website of the United States government

