skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An air-stable, well-defined palladium–BIAN–NHC chloro dimer: a fast-activating, highly efficient catalyst for cross-coupling
We report the synthesis, characterization and reactivity of an air-stable, well-defined acenaphthoimidazolylidene palladium–BIAN–NHC chloro dimer complex, [Pd(BIAN–IPr)(μ-Cl)Cl] 2 . This rapidly activating catalyst merges the reactive properties of palladium chloro dimers, [Pd(NHC)(μ-Cl)Cl] 2 , with the attractive structural features of the BIAN framework. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 is the most reactive Pd( ii )–NHC precatalyst discovered to date undergoing fast activation under both an inert atmosphere and aerobic conditions. The catalyst features bulky-yet-flexible sterics that render the C–H substituents closer to the metal center in combination with rapid dissociation to monomers and strong σ-donor properties. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 should be considered as a catalyst for reactions using well-defined Pd( ii )–NHCs.  more » « less
Award ID(s):
1650766
PAR ID:
10412428
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
53
ISSN:
1359-7345
Page Range / eLocation ID:
7404 to 7407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au( i ), Rh( i ) and Pd( ii ) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. 
    more » « less
  2. In this Special Issue, “Featured Papers in Organometallic Chemistry”, we report on the synthesis and characterization of [IPr#–PEPPSI], a new, well-defined, highly hindered Pd(II)–NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#–PEPPSI] in cross-coupling reactions in a range of bond activations with C–N, C–O, C–Cl, C–Br, C–S and C–H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#–PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)–NHC precatalysts in chemistry research. 
    more » « less
  3. null (Ed.)
    The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C–O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki–Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd( ii )–NHC precatalysts [Pd(NHC)(μ-Cl)Cl] 2 . We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl] 2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O–C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd( ii )–NHC catalysts, and versatile reactivity, these should be considered as the ‘first-choice’ catalysts for all routine applications in ester O–C(O) bond activation. 
    more » « less
  4. The Pd–NHC-catalyzed acyl-type Buchwald–Hartwig cross-coupling of amides by N–C(O) cleavage (transamidation) provides a valuable alternative to the classical methods for amide synthesis. Herein, we report a combined experimental and computational study of the Buchwald–Hartwig cross-coupling of amides using well-defined, air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts. Most crucially, we present a comprehensive evaluation of a series of distinct Pd( ii )–NHC precatalysts featuring different NHC scaffolds and throw-away ligands for the synthesis of functionalized amides that are not compatible with stoichiometric transition-metal-free transamidation methods. Furthermore, we present evaluation of the catalytic cycle by DFT methods for a series of different Pd( ii )–NHC precatalysts. The viability of accessing NHC-supported acyl-palladium( ii ) amido complexes will have implications for the design and development of cross-coupling methods involving stable amide electrophiles. 
    more » « less
  5. null (Ed.)
    The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions. 
    more » « less