skip to main content


Title: Imaging quantum spin Hall edges in monolayer WTe 2
A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe 2 . Here, we directly image the local conductivity of monolayer WTe 2 using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe 2 . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.  more » « less
Award ID(s):
1719797
NSF-PAR ID:
10090285
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
2
ISSN:
2375-2548
Page Range / eLocation ID:
eaat8799
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turning on superconductivity in a topologically nontrivial insulator may provide a route to search for non-Abelian topological states. However, existing demonstrations of superconductor-insulator switches have involved only topologically trivial systems. Here we report reversible, in situ electrostatic on-off switching of superconductivity in the recently established quantum spin Hall insulator monolayer tungsten ditelluride (WTe2). Fabricated into a van der Waals field-effect transistor, the monolayer’s ground state can be continuously gate-tuned from the topological insulating to the superconducting state, with critical temperaturesTcup to ~1 kelvin. Our results establish monolayer WTe2as a material platform for engineering nanodevices that combine superconducting and topological phases of matter.

     
    more » « less
  2. The layered semimetal tungsten ditelluride (WTe 2 ) has recently been found to be a two-dimensional topological insulator (2D TI) when thinned down to a single monolayer, with conducting helical edge channels. We found that intrinsic superconductivity can be induced in this monolayer 2D TI by mild electrostatic doping at temperatures below 1 kelvin. The 2D TI–superconductor transition can be driven by applying a small gate voltage. This discovery offers possibilities for gate-controlled devices combining superconductivity and nontrivial topological properties, and could provide a basis for quantum information schemes based on topological protection. 
    more » « less
  3. Abstract

    Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.

     
    more » « less
  4. Bi2Se3is a prototypical topological insulator, which has a small bandgap (∼0.3 eV) and topologically protected conducting surface states. This material exhibits quite strong thermoelectric effects. Here, we show in a mechanically exfoliated thick (∼100 nm) nanoflake device that we can measure the energy dependent optical absorption through the photothermoelectric effect. Spectral signatures are seen for a number of optical transitions between the valence and conduction bands, including a broad peak at 1.5 eV, which is likely dominated by bulk band-to-band optical transitions but is at the same energy as the well-known optical transition between the two topologically protected conducting surface states. We also observe a surprising linear polarization dependence in the response of the device that reflects the influence of the metal contacts.

     
    more » « less
  5. We develop a symmetry-based low-energy theory for monolayer \mathrm{WTe}_2 W T e 2 in its 1T ^{\prime} ′ phase, which includes eight bands (four orbitals, two spins). This modelreduces to the conventional four-band spin-degenerate Dirac model nearthe Dirac points of the material. We show that measurements of the spinsusceptibility, and of the magnitude and time dependence of theanomalous Hall conductivity induced by injected or equilibrium spinpolarization can be used to determine the magnitude and form of thespin-orbit coupling Hamiltonian, as well as the dimensionless tilt ofthe Dirac bands. 
    more » « less