skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1719797

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron‐transfer processes (i.e., mechanoredox catalysis), an energy‐conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition‐fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution‐state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.

     
    more » « less
  2. Abstract

    Image sensors with internal computing capability enable in-sensor computing that can significantly reduce the communication latency and power consumption for machine vision in distributed systems and robotics. Two-dimensional semiconductors have many advantages in realizing such intelligent vision sensors because of their tunable electrical and optical properties and amenability for heterogeneous integration. Here, we report a multifunctional infrared image sensor based on an array of black phosphorous programmable phototransistors (bP-PPT). By controlling the stored charges in the gate dielectric layers electrically and optically, the bP-PPT’s electrical conductance and photoresponsivity can be locally or remotely programmed with 5-bit precision to implement an in-sensor convolutional neural network (CNN). The sensor array can receive optical images transmitted over a broad spectral range in the infrared and perform inference computation to process and recognize the images with 92% accuracy. The demonstrated bP image sensor array can be scaled up to build a more complex vision-sensory neural network, which will find many promising applications for distributed and remote multispectral sensing.

     
    more » « less
  3. Abstract

    Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconductors have emerged as a promising candidate for engineering excitonic devices due to their long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe2driven by the propagating potential traps induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches 20 μm, a distance at least ten times longer than the diffusion length and only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to the acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers up to room temperature.

     
    more » « less
  4. Abstract

    The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi2Te4is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern numberC = 1 appears as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of theC = 1 state in the cAFM phase to theC = 2 orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the dissipationless chiral edge transport can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.

     
    more » « less
  5. Abstract

    A key obstacle for all quantum information science and engineering platforms is their lack of scalability. The discovery of emergent quantum phenomena and their applications in active photonic quantum technologies have been dominated by work with single atoms, self‐assembled quantum dots, or single solid‐state defects. Unfortunately, scaling these systems to many quantum nodes remains a significant challenge. Solution‐processed quantum materials are uniquely positioned to address this challenge, but the quantum properties of these materials have remained generally inferior to those of solid‐state emitters or atoms. Additionally, systematic integration of solution‐processed materials with dielectric nanophotonic structures has been rare compared to other solid‐state systems. Recent progress in synthesis processes and nanophotonic engineering, however, has demonstrated promising results, including long coherence times of emitted single photons and deterministic integration of emitters with dielectric nano‐cavities. In this review article, these recent experiments using solution‐processed quantum materials and dielectric nanophotonic structures are discussed. The progress in non‐classical light state generation, exciton‐polaritonics for quantum simulation, and spin‐physics in these materials is discussed and an outlook for this emerging research field is provided.

     
    more » « less
  6. Abstract

    Ternary metal‐chalcogenide semiconductor nanocrystals are an attractive class of materials due to their tunable optoelectronic properties that result from a wide range of compositional flexibility and structural diversity. Here, the phase‐controlled synthesis of colloidal silver iron sulfide (AgFeS2) nanocrystals is reported and their resonant light–matter interactions are investigated. The product composition can be shifted selectively from tetragonal to orthorhombic by simply adjusting the coordinating ligand concentration, while keeping the other reaction parameters unchanged. The results show that excess ligands impact precursor reactivity, and consequently the nanocrystal growth rate, thus deterministically dictating the resulting crystal structure. Moreover, it is demonstrated that the strong ultraviolet‐visible extinction peak exhibited by AgFeS2nanocrystals is a consequence of a quasi‐static dielectric resonance (DR), analogous to the optical response observed in CuFeS2nanocrystals. Spectroscopic studies and computational calculations confirm that a negative permittivity at ultraviolet/visible frequencies arises due to the electronic structure of these intermediate‐band (IB) semiconductor nanocrystals, resulting in a DR consisting of resonant valence‐band‐to‐intermediate‐band excitations, as opposed to the well‐known localized surface plasmon resonance response typically observed in metallic nanostructures. Overall, these results expand the current library of an underexplored class of IB semiconductors with unique optical properties, and also enrich the understanding of DRs in ternary metal‐iron‐sulfide nanomaterials.

     
    more » « less
  7. Abstract

    Flat band moiré superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin ‘flavor’ symmetries. Twisted monolayer-bilayer graphene (tMBG) is an especially rich system owing to its low crystal symmetry and the tunability of its bandwidth and topology with an external electric field. Here, we find that orbital magnetism is abundant within the correlated phase diagram of tMBG, giving rise to the anomalous Hall effect in correlated metallic states nearby most odd integer fillings of the flat conduction band, as well as correlated Chern insulator states stabilized in an external magnetic field. The behavior of the states at zero field appears to be inconsistent with simple spin and valley polarization for the specific range of twist angles we investigate, and instead may plausibly result from an intervalley coherent (IVC) state with an order parameter that breaks time reversal symmetry. The application of a magnetic field further tunes the competition between correlated states, in some cases driving first-order topological phase transitions. Our results underscore the rich interplay between closely competing correlated ground states in tMBG, with possible implications for probing exotic IVC ordering.

     
    more » « less
  8. Abstract

    Light‐emitting diodes (LEDs) are a lighting technology with a huge and ascending market. Typically, LED backlights are often paired with inorganic phosphors made from rare‐earth elements (REEs) to tune the emission lineshapes for different applications. However, REE production is a resource‐intensive process with many negative environmental impacts. Herein organic hybrid LEDs are developed using organic dyes synthesized from an abundant and non‐toxic natural product (theobromine) to replace REE phosphors. The resulted hybrid LED generates continuous emission from 400–740 nm, resulting in a high color rendering index (the current industry standard) of 90 and a color fidelity index (the most advanced and comprehensive standard) of 92, challenging commercial LEDs based on REE phosphors. In addition, the light‐converting composite is made from 99 wt% SBS, an inexpensive industrial polymer, and 1 wt% theobromine dyes, reducing the cost of the light converter to ¢1.30 for a 1 W LED, compared to approximately ¢ 19.2 of commercial products. The light converting efficiency of the dye‐SBS composite is 82%. Excited state kinetics experiments are also conducted to provide guidance to further increase the light‐converting efficiency of the theobromine dyes while maintaining excellent color rendering and fidelity.

     
    more » « less
  9. Abstract

    Surface functionalization of two‐dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface‐specific protocol for the surface functionalization of few‐layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X‐ray photoelectron, solid state31P NMR, and UV‐vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy,15N‐labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

     
    more » « less
  10. Abstract

    Herein we introduce a facile, solution‐phase protocol to modify the Lewis basic surface of few‐layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft‐ness are evaluated. The nature of the interaction between the Lewis acids and thebP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X‐ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation ofbP (>84 h for AlBr3), and the resulting field‐effect transistors show excellentIVcharacteristics, photocurrent, and current stability, and are significantly p‐doped. This protocol, chemically matched tobP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties inbP.

     
    more » « less