skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A baseline experiment for the effect of virtual immersion on vehicle passenger risk perception
The goal of this study was to evaluate driver risk behavior in response to changes in their risk perception inputs, specifically focusing on the effect of augmented visual representation technologies. This experiment was conducted for the purely real-driving scenario, establishing a baseline by which future, augmented visual representation scenarios can be compared. Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) simulation technologies have rapidly improved over the last three decades to where, today, they are widely used and more heavily relied upon than before, particularly in the areas of training, research, and design. The resulting utilization of these capabilities has proven simulation technologies to be a versatile and powerful tool. Virtual immersion, however, introduces a layer of abstraction and safety between the participant and the designed artifact, which includes an associated risk compensation. Quantifying and modeling the relationship between this risk compensation and levels of virtual immersion is the greater goal of this project. This study focuses on the first step, which is to determine the level of risk perception for a purely real environment for a specific man-machine system - a ground vehicle – operated in a common risk scenario – traversing a curve at high speeds. Specifically, passengers are asked to assess whether the vehicle speed within a constant-radius curve is perceived as comfortable. Due to the potential for learning effects to influence risk perception, the experiment was split into two separate protocols: the latent response protocol and the learned response protocol. The latent response protocol applied to the first exposure of an experimental condition to the subject. It consisted of having the subjects in the passenger seat assess comfort or discomfort within a vehicle that was driven around a curve at a randomlychosen value among a selection of test speeds; subjects were asked to indicate when they felt uncomfortable by pressing a brake pedal that was instrumented to alert the driver. Next, the learned response protocol assessed the subjects for repeated exposures but allowing subjects to use brake and throttle pedals to indicate if they wanted to go faster or slower; the goal was to allow subjects to iterate toward their maximum comfortable speed. These pedals were instrumented to alert the driver who responded accordingly. Both protocols were repeated for a second curve with a different radius. Questionnaires were also administered after each trial that addressed the subjective perception of risk and provided a means to substantiate the measured risk compensation behavior. The results showed that, as expected, the latent perception of risk for a passenger traversing a curve was higher than the learned perception for successive exposures to the same curve; in other words, as drivers ‘learned’ a curve, they were more comfortable with higher speeds. Both the latent and learned speeds provide a suitable metric by which to compare future replications of this experiment at different levels of virtual immersion. Correlations were found between uncomfortable subject responses and the yaw acceleration of the vehicle. Additional correlation of driver discomfort was found to occur at specific locations on the curves. The yaw acceleration is a reflection of the driver’s ability to maintain a steady steering input, whereas the location on the curve was found to correlate with variations in the lane-markings and environmental cues.  more » « less
Award ID(s):
1635663
PAR ID:
10090402
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Human Factors and Ergonomics (AHFE 2018), "Human Factors in Transportation" Session
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In virtual reality (VR), established perception–action relationships break down because of conflicting and ambiguous sensorimotor inputs, inducing walking velocity underestimations. Here, we explore the effects of realigning perceptual sensory experiences with physical movements via augmented feedback on the estimation of virtual speed. We hypothesized that providing feedback about speed would lead to concurrent perceptual improvements and that these alterations would persist once the speedometer was removed. Ten young adults used immersive VR to view a virtual hallway translating at a series of fixed speeds. Participants were tasked with matching their walking speed on a self-paced treadmill to the optic flow in the environment. Information regarding walking speed accuracy was provided during augmented feedback trials via a real-time speedometer. We measured resulting walking velocity errors, as well as kinematic gait parameters. We found that the concordance between the virtual environment and gait speeds was higher when augmented feedback was provided during the trial. Furthermore, we observed retention effects beyond the intervention period via demonstrated smaller errors in speed perception accuracy and stronger concordance between perceived and actual speeds. Together, these results highlight a potential role for augmented feedback in guiding gait strategies that deviate away from predefined internal models of locomotion. 
    more » « less
  2. Improvements to ArduSub for the BlueROV2 (BROV2) Heavy, necessary for accurate simulation and autonomous controller design, were implemented and validated in this work. The simulation model was made more accurate with new data obtained from real-world testing and values from the literature. The manual control algorithm in the BROV2 firmware was replaced with one compatible with automatic control. In a Robot Operating System (ROS), a proportional–derivative (PD) controller to assist augmented reality (AR) pilots in controlling angular degrees of freedom (DOF) of the vehicle was implemented. Open-loop testing determined the yaw hydrodynamic model of the vehicle. A general mathematical method to determine PD gains as a function of the desired closed-loop performance was outlined. Testing was carried out in the updated simulation environment. Step response testing found that a modified derivative gain was necessary. Comparable real-world results were obtained using settings determined in the simulation environment. Frequency response testing of the modified yaw control law discovered that the bandwidth of the nonlinear system had a one-to-one correspondence with the desired closed-loop natural frequency of a simplified linear approximation. The control law was generalized for angular DOF and linear DOF were operated with open-loop control. A full six-DOF simulated dive demonstrated excellent tracking. 
    more » « less
  3. Recent research suggests construction workers fall prey to the cognitive biases of risk compensation, wherein workers offset safety improvements by taking more risks. Parallel previous literature indicates that time pressure and mental load may increase workers’ arousal and stress. However, it is unclear whether time, productivity, and/or cognitive demands can worsen risk compensation behaviors by stimulating workers to make riskier decisions to complete tasks faster. Combining a multi-modal mixed-reality environment with wearable neuro-psychophysiological sensors, this study examines changes in safety and task performance for high-risk electrical-line tasks simulated under time/performance pressure and cognitive demand. The results show risk-compensation is in play as subjects over-rely on safety technologies and maintain their risk perception even while undertaking more risks to adapt to increased time pressure and/or cognitive demand. This paper contributes to body of knowledge by affecting safety-training approaches and the controls needed when providing workers with safety protection and new technological advances. 
    more » « less
  4. Mixed reality (MR) interactions feature users interacting with a combination of virtual and physical components. Inspired by research investigating aspects associated with near-field interactions in augmented and virtual reality (AR & VR), we investigated how avatarization, the physicality of the interacting components, and the interaction technique used to manipulate a virtual object affected performance and perceptions of user experience in a mixed reality fundamentals of laparoscopic peg-transfer task wherein users had to transfer a virtual ring from one peg to another for a number of trials. We employed a 3 (Physicality of pegs) X 3 (Augmented Avatar Representation) X 2 (Interaction Technique) multi-factorial design, manipulating the physicality of the pegs as a between-subjects factor, the type of augmented self-avatar representation, and the type of interaction technique used for object-manipulation as within-subjects factors. Results indicated that users were significantly more accurate when the pegs were virtual rather than physical because of the increased salience of the task-relevant visual information. From an avatar perspective, providing users with a reach envelope-extending representation, though useful, was found to worsen performance, while co-located avatarization significantly improved performance. Choosing an interaction technique to manipulate objects depends on whether accuracy or efficiency is a priority. Finally, the relationship between the avatar representation and interaction technique dictates just how usable mixed reality interactions are deemed to be. 
    more » « less
  5. This video shows a concept of a future mobile office in a semi-automated vehicle that uses augmented reality. People perform non-driving tasks in current, non-automated vehicles even though that is unsafe. Moreover, even for passengers there is limited space, it is not social, and there can be motion sickness. In future cars, technology such as augmented reality might alleviate some of these issues. Our concept shows how augmented reality can project a remote conversant onto the dashboard. Thereby, the driver can keep an occasional eye on the road while the automated vehicle drives, and might experience less motion sickness. Potentially, this concept might even be used for group calls or for group activities such as karaoke, thereby creating a social setting. We also demonstrate how integration with an intelligent assistant (through speech and gesture analysis) might save the driver from having to grab a calendar to write things down, again allowing them to focus on the road. 
    more » « less