skip to main content


Title: Effect of Time Pressure and Cognitive Demand on Line Workers’ Risk-Taking Behaviors: Assessment of Neuro-Psychophysiological Responses in a Mixed-Reality Environment
Recent research suggests construction workers fall prey to the cognitive biases of risk compensation, wherein workers offset safety improvements by taking more risks. Parallel previous literature indicates that time pressure and mental load may increase workers’ arousal and stress. However, it is unclear whether time, productivity, and/or cognitive demands can worsen risk compensation behaviors by stimulating workers to make riskier decisions to complete tasks faster. Combining a multi-modal mixed-reality environment with wearable neuro-psychophysiological sensors, this study examines changes in safety and task performance for high-risk electrical-line tasks simulated under time/performance pressure and cognitive demand. The results show risk-compensation is in play as subjects over-rely on safety technologies and maintain their risk perception even while undertaking more risks to adapt to increased time pressure and/or cognitive demand. This paper contributes to body of knowledge by affecting safety-training approaches and the controls needed when providing workers with safety protection and new technological advances.  more » « less
Award ID(s):
2049711
NSF-PAR ID:
10392308
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Construction Research Congress 2022
Page Range / eLocation ID:
759 to 769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Owing to the increasing dynamics and complexity of construction tasks, workers often need to memorize a big amount of engineering information prior to the operations, such as spatial orientations and operational procedures. The working memory development, as a result, is critical to the performance and safety of many construction tasks. This study investigates how the format of engineering information affects human working memory based on a human-subject Virtual Reality (VR) experiment (n=90). A VR model was created to simulate a pipe maintenance task. First, participants were asked to review the task procedures in one of the following formats, including 2D isometric drawings, 3D model, and VR model. After the review session, participants were asked to perform the pipe maintenance task in the virtual environment based on their working memory. The operation accuracy and time were used as the key performance indicators of the working memory development. The experiment results indicate that the 3D and VR groups outperformed the 2D group in both operation accuracy and time, suggesting that a more immersive instruction leads to a better working memory. A further examination finds that the 2D group presented a significantly higher level of intrinsic cognitive load and extraneous cognitive load in the working memory development compared to the 3D and VR groups, indicating that different engineering information formats can cause different levels of cognitive load in working memory development, and ultimately affect the final performance. The findings are expected to inspire the design of intelligent information systems that adapt to the cognitive load of construction workers for improved working memory development. 
    more » « less
  2. Abstract Practitioner points

    Wastewater workers are at increased risk of infectious illnesses.

    Policies to protect wastewater workers from these illnesses are lacking.

    We developed guidelines for use of personal protective equipment by wastewater workers to prevent exposure to infectious agents.

     
    more » « less
  3. Risk propensity, or individuals’ attitude toward risk, can highly impact individuals’ decision-making in high-risk environments since those who merely focus on positive consequences associated with high-risk acts are more likely to engage in risk-taking behaviors. Previous studies identified activation in the prefrontal cortex during decision-making under risk to be a sign of an individual’s attitude toward risks. To investigate whether such past work—prevalent in behavioral research domains—translates into construction safety, this study conducted an experiment in a mixed-reality environment using functional near-infrared spectroscopy (fNIRS) technology to examine whether positive risk attitudes cause individuals to adopt risky construction behaviors and whether the activation of the prefrontal cortex of the brain can represent such risk attitudes. The results show that participants with a higher risk propensity had a higher brain activation during the risky electrical tasks; these individuals merely focused on gains, which motivated them to increase their risk-taking behavior and consequently experience more electrical accidents. Understanding workers’ attitudes toward risk will thus influence future understandings of decision behavior under risk. 
    more » « less
  4. One of the main contributors to the human errors that lead to catastrophic injuries in the construction workplace is the failure to identify hazards as a result of poor attention or cognitive lapses. To address this safety concern, the present study used eye-tracking technology to assess how the association between work experience and hazard identification may be mediated due to inattention. A mediation analysis was conducted and tested using a bias-corrected bootstrapping technique with 5000 resamples. The results estimate the direct and indirect effects of work experience on the hazard identification skills of construction workers observing varying hazardous conditions. The results of the mediation analysis confirm that inattention—demonstrated via inattentiveness toward hazards—mediates the relationship between work experience and hazard identification. Specifically, though work experience and dwell time positively correlate with hazard identification, the direct effect of work experience on hazard identification is attenuated with the inclusion of the mediator variables in the model, thus suggesting attentional impairment offsets the benefits of work experience. The outcomes of this study will enable researchers and safety practitioners to harness real-time eye-movement patterns to identify the precursors of cognitive failure, deficient attentional allocation, and poor visual search strategies, all of which may put workers at risk on construction sites. The results also facilitate the provision of personalized safety feedback to workers and the design of training interventions that will address unique performance deficiencies in workers to prevent the human errors that cause injuries in dynamic environments. 
    more » « less
  5. null (Ed.)
    Although driving is a complex and multitask activity, it is not unusual for drivers to engage simultaneously in other non-driving related tasks using secondary in-vehicle displays (IVIS). The use of IVIS and its potential negative safety consequences has been investigated over the years. However with the advent and advance of in-vehicle technologies such as augmented-reality head-up displays (AR HUDs), there are increasing opportunities for improving secondary task engagement and decreasing negative safety consequences. In this study, we aim to understand the effects of AR HUD low cognitive load tasks on driving performance during monotonous driving. Adapting NHTSA’s driver distraction guidelines, we conducted a user-study with twenty-four gender-balanced participants that performed secondary AR HUD tasks of different durations while driving in a monotonous environment using a medium-fidelity driving simulator. We performed a mixed-methods analysis to evaluate driver’s perceived workload (NASA-TLX), lateral, and longitudinal driving performance. Although we found that drivers subjectively perceive AR HUD tasks to have a higher cognitive demand; AR tasks resulted in improved driving performance. Conversely, the duration of the secondary tasks had no measurable impacts on performance which suggests that the amount of time spent on tasks has no negative or positive implications on driving performance. We provide evidence that there are potential benefits of secondary AR task engagement; in fact, there are situations in which AR HUDs can improve driver’s alertness and vigilance. 
    more » « less