skip to main content


Title: A Composite Perspective on Bore Passages during the PECAN Campaign

Atmospheric bores have been shown to have a role in the initiation and maintenance of elevated convection. Previous observational studies of bores have been case studies of more notable events. However, this creates a selection bias toward extraordinary cases, while discussions of the differences between bores that favor convective initiation and maintenance and bores that do not are lacking from the literature. This study attempts to fill that gap by analyzing a high-temporal-resolution thermodynamic profile composite of eight bores observed by multiple platforms during the Plains Elevated Convection at Night (PECAN) campaign in order to assess the impact of bores on the environment. The time–height cross section of the potential temperature composite displays quasi-permanent parcel displacements up to 900 m with the bore passage. Low-level lifting is shown to weaken the capping inversion and reduce convective inhibition (CIN) and the level of free convection (LFC). Additionally, low-level water vapor increases by about 1 g kg−1in the composite mean. By assessing variability across the eight cases, it is shown that increases in low-level water vapor result in increases to convective available potential energy (CAPE), while drying results in decreased CAPE. Most cases resulted in decreased CIN and LFC height with the bore passage, but only some cases resulted in increased CAPE. This suggests that bores will increase the potential for convective initiation, but future research should be directed toward better understanding cases that result in increased CAPE as those are the types of bores that will increase severity of convection.

 
more » « less
NSF-PAR ID:
10090574
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
4
ISSN:
0027-0644
Page Range / eLocation ID:
p. 1395-1413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE.

     
    more » « less
  2. Abstract

    Bores have been shown to play a role in the initiation and maintenance of mesoscale convective systems (MCSs), particularly during the night after the boundary layer stabilizes. To date, the generation, evolution, and structure of bores over China has received little attention. This study utilizes observations and simulations with the WRF‐ARW model to investigate the generation and evolution of an atmospheric bore observed over Yangtze‐Huai Plains of China. The bore was associated with a nocturnal MCS that first formed over elevated terrain. The bore was observed ahead of the MCS with a maximum lateral extension of ~100 km. The feature lasted for over 90 mins and propagated at a speed of ~13 m/s, slightly faster than the MCS. In the simulation, the bore evolved from the separating “head” of the convectively generated gravity current. The bore then continued to propagate ahead of the MCS, even after the dissipation of the feeder current, and took on the appearance of an undular bore. The bore lifted a layer of convectively unstable air above the nocturnal surface inversion, initiating new convection ahead of the MCS to help maintain the MCS. The Scorer parameter ahead of the bore revealed a low‐level wind profile with curvature of the vertical profile of horizontal wind, favoring the trapping of wave energy and the persistence of the bore. These results are generally consistent with the role of bores in the maintenance of nocturnal MCSs and emphasize the need for future studies into the relationship between bores and nocturnal MCSs over China.

     
    more » « less
  3. Four case studies from the Plains Elevated Convection at Night (PECAN) field experiment are used to investigate the impacts of horizontal and vertical resolution, and vertical mixing parameterization, on predictions of bore structure and upscale impacts of bores on their mesoscale environment. The reduction of environmental convective inhibition (CIN) created by the bore is particularly emphasized. Simulations are run with horizontal grid spacings ranging from 250 to 1000 m, as well as 50 m for one case study, different vertical level configurations, and different closure models for the vertical turbulent mixing at 250-m horizontal resolution. The 11 July case study was evaluated in greatest detail because it was the best observed case and has been the focus of a previous study. For this case, it is found that 250-m grid spacing improves upon 1-km grid spacing, LES configuration provides further improvement, and enhanced low-level vertical resolution also provides further improvement in terms of qualitative agreement between simulated and observed bore structure. Reducing LES grid spacing further to 50 m provided very little additional advantage. Only the LES experiments properly resolved the upscale influence of reduced low-level CIN. Expanding on the 11 July case study, three other cases from PECAN with diverse observed bore structures were also evaluated. Similar to the 11 July case, enhancing the horizontal and vertical grid spacings, and using the LES closure model for vertical turbulent mixing, all contributed to improved simulations of both the bores themselves and the larger-scale modification of CIN to varying degrees on different cases.

     
    more » « less
  4. Abstract

    This study used radar observations and a high‐resolution numerical simulation to explore the interactions between an mesoscale convective system (MCS), cold pool outflows, and atmospheric bores in a non‐uniform baroclinic environment. The bores were generated by a nocturnal MCS that occurred on 2–3 June 2017 over the southern North China Plain. The goal of this investigation is to determine how the structure of bores varied within this non‐uniform environment and whether and how the bores would maintain the MCS and alter its structure. To the southwest of the MCS, where there was large CAPE and a well‐mixed boundary layer, discrete convection initiation occurred behind a single radar fine line (RFL) maintaining the propagation of the MCS. To the southeast of the MCS, multiple RFLs were found suggesting the generation of an undular bore in an environment containing an intense nocturnal stable boundary layer with dry upper layers and little CAPE. Hydraulic and nonlinear theory were applied to the simulation of the MCS revealing that the differences in the bore evolution depended on both the characteristics of the cold pool and the variations in the ambient environment. Thus, the characteristics of the ambient environment and the associated differences in bore structure impacted the maintenance and organization of the MCS. This study implies the importance of an accurate representation of the low‐level ambient environment and the microphysics and kinematics within the MCS to accurately simulate and forecast cold pools, the generation and evolution of bores, and their impact on nocturnal MCSs.

     
    more » « less
  5. null (Ed.)
    Abstract Nocturnal bow echoes can produce wind damage, even in situations where elevated convection occurs. Accurate forecasts of wind potential tend to be more challenging for operational forecasters than for daytime bows because of incomplete understanding of how elevated convection interacts with the stable boundary layer. The present study compares the differences in warm-season, nocturnal bow echo environments in which high intensity [>70 kt (1 kt ≈ 0.51 m s −1 )] severe winds (HS), low intensity (50–55 kt) severe winds (LS), and nonsevere winds (NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the SPC mesoanalysis system were examined over a 120 km × 120 km region centered on the strongest storm report or most pronounced bowing convective segment. Severe composite parameters are found to be among the best discriminators between all severity types, especially derecho composite parameter (DCP) and significant tornado parameter (STP). Shear parameters are significant discriminators only between severe and nonsevere cases, while convective available potential energy (CAPE) parameters are significant discriminators only between HS and LS/NS bow echoes. Convective inhibition (CIN) is among the worst discriminators for all severity types. The parameters providing the most predictive skill for HS bow echoes are STP and most unstable CAPE, and for LS bow echoes these are the V wind component at best CAPE (VMXP) level, STP, and the supercell composite parameter. Combinations of two parameters are shown to improve forecasting skill further, with the combination of surface-based CAPE and 0–6-km U shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts, respectively. 
    more » « less