skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kindling the fire: Fueling preservice science teachers' interest to teach in high‐needs schools
Abstract This study applies psychological models of interest and motivation (i.e., a model of interest‐development and self‐determination theory) to the experiences of six preservice science Noyce scholars who participated in a teacher preparation program. The National Science Foundation's Noyce grant aims to incentivize mathematics and science majors to teach in high‐needs school districts. Through this interview study, we sought to understand how Noyce scholars' pre‐existing interests and their experiences in the Noyce program interact to develop individual commitments to teach in high‐needs school settings. Case studies reveal that scholars had no prior experiences in high‐needs schools, abstract ideas about teachers, students, and resources in these contexts, and varying degrees of initial connectedness to teaching in high‐needs school settings. Scholars found that site visits to diverse high‐needs schools (i.e., rural and urban) triggered their interest to teach in similar contexts. Preservice science teachers' emerging interest and level of commitment to teaching in high‐needs schools following the teacher preparation program was dependent upon context‐specific mastery experiences and autonomy within their long‐term clinical field experience. This study offers implications for teacher educators who are recruiting and preparing students to teach in high‐needs school contexts.  more » « less
Award ID(s):
1758419
PAR ID:
10091116
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
103
Issue:
4
ISSN:
0036-8326
Page Range / eLocation ID:
p. 875-899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a time when the United States is faced with continued racism and social unrest, it is more important than ever to prepare teachers who can advocate for marginalized students and social justice. This article describes the evolution of a seminar course called Theory and Reality: Practicum in Math and Science Teaching in High-Need Schools within the context of a predominately White teacher-preparation program. Guided by scholars of culturally relevant education and our professional and personal journeys as equity-focused teacher educators, we sought to design experiences to prepare preservice science and mathematics teachers to teach in high-poverty or underfunded schools. Specifically, the course was intended to (1) develop an understanding of pedagogical practices and educational strategies for successful teaching in a high-need school setting, especially in mathematics and science classrooms, and (2) cultivate both cultural self-awareness and cross-cultural consciousness in one’s ability to adapt to the high-need environment in a culturally responsive way. We describe the evolutionary rationale for changes made to course assignments and readings to promote cultural competence and early advocacy skills for teacher candidates interested in teaching in schools facing poverty. We highlight preservice teachers’ reflections that evidence their early conceptualizations of teaching in a high-need school context and how assignments promoted their relationship-building and advocacy skills for marginalized students. 
    more » « less
  2. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less
  3. Smith, W. M. (Ed.)
    The NebraskaMATH Omaha Noyce Partnership Scholarship awards scholarships funded by the National Science Foundation (NSF) to undergraduate students interested in mathematics education at the University of Nebraska at Omaha (UNO). Scholars, who are dual mathematics and secondary education majors, are engaged and supported by Noyce faculty to not only excel in their college coursework and career preparation, but also to serve the university and community through teaching assistantships and STEM community outreach. The main goal of this program is to strengthen and expand the pipeline for preparing high-quality teachers of mathematics to better meet the responsibilities and demands of local school districts, particularly those serving students with high-need. Cross-campus collaborations between the departments of teacher education and mathematics co-constructed the Noyce infrastructure to emphasize and share the development of future, high-quality secondary mathematics teachers (Mathematics Teacher Education Partnership, 2014). This paper describes our program’s unique design and implementation features aimed to empower, engage, and extend the talents of our undergraduate students. We share lessons learned and recommendations from faculty and participants regarding decisions and facets of the program considered to be most influential in STEM teacher and leadership development. 
    more » « less
  4. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will do a longitudinal comparison of science lesson plan implementations from a group of preservice teachers’ experiences during a STEM-based summer program to their experiences during their Fall semester in their practice in regular elementary and middle schools. On the one hand, their summer experiences consisted of learning and implementing science and engineering lesson plans using culturally and linguistically sustaining pedagogies, which was an intensive and guided opportunity led by university faculty on one of the university campuses. In this experience, preservice teachers collaborated with peers for 15 days to implement and evaluate their teaching of science activities in a flexible environment. On the other hand, preservice teachers have their required practice in schools during senior year to implement lesson plans and become familiar with the regular tasks of an in-service teacher. This comparison is part of the research conducted by the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation and focuses on providing the necessary pedagogical tools to teach STEM to multilingual students (in our case, from Latin American countries). We conclude with a series of recommendations for preservice teachers and in-service teachers who have multilingual and emerging bilingual learners in their classrooms. 
    more » « less
  5. Langran, E.; Christensen, P.; Sanson, J. (Ed.)
    Prior to COVID-19 and the shift to fully online instruction, teacher preparation programs were teaching candidates to use technology in the classroom, but they were not focusing on how to teach in exclusively online or hybrid models. In the future, all preservice teachers will need to know how to teach online, whether due to necessity or by choice. Therefore, the purpose of our research is to first identify essential elements of critical digital pedagogy for facilitating online inquiry, and then to integrate these methods into our teacher preparation program to prepare preservice teachers to facilitate inquiry-based science, technology, and mathematics (STEM) effectively in online learning environments that are equitable and inclusive of all learners. We utilize a mixed-methods approach with quantitative and qualitative measures including literature reviews, individual interviews, focus groups, program documents, and efficacy surveys. Drawing on this data, this presentation shares the findings from the first part of this three-year research project by discussing essential elements of critical digital pedagogy for facilitating online STEM inquiry. We identify what tools and instructional approaches can be used to support STEM learning in online environments in ways that will support all students, including those who are traditionally marginalized in U.S. schools. 
    more » « less