skip to main content


Title: Designing for Justice: Preparing Culturally Competent Science and Mathematics Teacher Advocates for High-Need Schools
In a time when the United States is faced with continued racism and social unrest, it is more important than ever to prepare teachers who can advocate for marginalized students and social justice. This article describes the evolution of a seminar course called Theory and Reality: Practicum in Math and Science Teaching in High-Need Schools within the context of a predominately White teacher-preparation program. Guided by scholars of culturally relevant education and our professional and personal journeys as equity-focused teacher educators, we sought to design experiences to prepare preservice science and mathematics teachers to teach in high-poverty or underfunded schools. Specifically, the course was intended to (1) develop an understanding of pedagogical practices and educational strategies for successful teaching in a high-need school setting, especially in mathematics and science classrooms, and (2) cultivate both cultural self-awareness and cross-cultural consciousness in one’s ability to adapt to the high-need environment in a culturally responsive way. We describe the evolutionary rationale for changes made to course assignments and readings to promote cultural competence and early advocacy skills for teacher candidates interested in teaching in schools facing poverty. We highlight preservice teachers’ reflections that evidence their early conceptualizations of teaching in a high-need school context and how assignments promoted their relationship-building and advocacy skills for marginalized students.  more » « less
Award ID(s):
1758419
NSF-PAR ID:
10325419
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Innovations
Volume:
7
Issue:
2
ISSN:
2472-2553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Through school-university partnerships that situate learning within culturally relevant educational experiences, faculty, preservice teachers, and school-based educators are able to co-construct and share scientific knowledge. This knowledge consists of pedagogical content knowledge and funds of knowledge that include both knowledge and skills developed in cultural context that have evolved historically. In early childhood education, culturally relevant Science, Technology, Engineering, Arts, and Mathematics (STEAM) learning experiences are particularly important for young children's cognitive and social emotional development. This paper describes how intentional co-planning and collaboration to celebrate the US Read across America Day provided over 100 preschool children in eight classrooms with access to STEAM lessons virtually led by university preservice teachers in partnership with educators in the school. These activities engaged children in exploring art, computer science, physical science, engineering, and mathematics within the context of a culturally relevant version of the fairy tale Goldilocks and the Three Bears. Lessons implemented as part of school-university partnerships support Black and Latinx children's development of a sense of belonging in STEAM. Further, these experiences enhance teacher candidates' abilities to engage in culturally responsive STEAM teaching while receiving ongoing guidance and education from university faculty and school-based educators. Teacher education programs within higher education institutions should embrace school- university partnerships as contexts for the development of shared scientific knowledge and discourse since the benefits are twofold. First, children and teachers gain access to, and engage with, innovative STEAM experiences. Second, preservice teachers learn culturally relevant research-based instructional strategies through university coursework situated in authentic learning experiences; thus, their learning as teacher candidates is enhanced through planning, implementation, evaluation, and critical reflection. 
    more » « less
  2. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less
  3. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less
  4. Langran, E. ; Christensen, P. ; Sanson, J. (Ed.)
    Prior to COVID-19 and the shift to fully online instruction, teacher preparation programs were teaching candidates to use technology in the classroom, but they were not focusing on how to teach in exclusively online or hybrid models. In the future, all preservice teachers will need to know how to teach online, whether due to necessity or by choice. Therefore, the purpose of our research is to first identify essential elements of critical digital pedagogy for facilitating online inquiry, and then to integrate these methods into our teacher preparation program to prepare preservice teachers to facilitate inquiry-based science, technology, and mathematics (STEM) effectively in online learning environments that are equitable and inclusive of all learners. We utilize a mixed-methods approach with quantitative and qualitative measures including literature reviews, individual interviews, focus groups, program documents, and efficacy surveys. Drawing on this data, this presentation shares the findings from the first part of this three-year research project by discussing essential elements of critical digital pedagogy for facilitating online STEM inquiry. We identify what tools and instructional approaches can be used to support STEM learning in online environments in ways that will support all students, including those who are traditionally marginalized in U.S. schools. 
    more » « less
  5. Abstract  
    more » « less