skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patterns of sediment-associated fecal indicator bacteria in an urban estuary: Benthic-pelagic coupling and implications for shoreline water quality.
Estuarine and coastal waterways are commonly monitored for fecal and sewage contamination to protect recreator health and ecosystem functions. Such monitoring programs commonly rely on cultivation-based counts of fecal indicator bacteria (FIB) in water column samples. Recent studies demonstrate that sediments and beach sands can be heavily colonized by FIB, and that settling and resuspension of colonized particles may significantly influence the distribution of FIB in the water column. However, measurements of sediment FIB are rarely incorporated into monitoring programs, and geographic surveys of sediment FIB are uncommon. In this study, the distribution of FIB and the extent of benthic-pelagic FIB coupling were examined in the urbanized, lower Hudson River Estuary. Using cultivation-based enumeration, two commonly-measured FIB, enterococci and Escherichia coli, were widely distributed in both sediment and water, and were positively correlated with each other. The taxonomic identity of FIB isolates from water and sediment was confirmed by DNA sequencing. The geometric mean of FIB concentration in sediment was correlated with both the geometric mean of FIB in water samples from the same locations and with sediment organic carbon. These two positive associations likely reflect water as the FIB source for underlying sediments, and longer FIB persistence in the sediments compared to the water, respectively. The relative representation of other fecal associated bacterial genera in sediment, determined by 16S rRNA gene sequencing, increased with the sequence representation of the two FIB, supporting the value of these FIB for assessing sediment contamination. Experimental resuspension of sediment increased shoreline water column FIB concentrations, which may explain why shoreline water samples had higher average FIB concentrations than samples collected nearby but further from shore. In combination, these results demonstrate extensive benthic-pelagic coupling of FIB in an urbanized estuary and highlight the importance of sediment FIB distribution and ecology when interpreting water quality monitoring data.  more » « less
Award ID(s):
1757602
PAR ID:
10091196
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science of the total environment
Volume:
656
ISSN:
0048-9697
Page Range / eLocation ID:
1168-1177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E . coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E . coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds ( E . coli , 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E . coli , enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log 10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters. 
    more » « less
  2. Thrash, J. Cameron (Ed.)
    ABSTRACT High fecal indicator bacterium (FIB) counts in water have been found to correlate with high sediment FIB counts. To determine the other bacterial populations in common between the two substrates, sediment and water samples from suburban waters known to be impacted by stormwater runoff were examined using next-generation sequencing. 
    more » « less
  3. A smartphone-integrated dielectrophoretic (SiDEP) platform is presented for on-site and real-time monitoring of fecal indicator bacteria (FIB) to examine the presence and concentration levels of fecal contamination in environmental water via loop-mediated isothermal amplification (LAMP) assays on a smartphone. Experimental demonstrations have verified the SiDEP’s capabilities for (1) on-chip water sample processing, (2) portable LAMP assays, and (3) colorimetric analysis of fecal water quality. The SiDEP truly offers a low-cost, portable, and fully-integrated system enabling rapid on-site detection of the presence of FIB and their associated pathogens in environmental water without the need for sophisticated laboratory equipment or skilled personnel. 
    more » « less
  4. Abstract The seabed and the water column are tightly coupled in shallow coastal environments. Numerical models of seabed‐water interaction provide an alternative to observational studies that require concurrent measurements in both compartments, which are hard to obtain and rarely available. Here, we present a coupled model that includes water column biogeochemistry, seabed diagenesis, sediment transport and hydrodynamics. Our model includes realistic representations of biogeochemical reactions in both seabed and water column, and fluxes at their interface. The model was built on algorithms for seabed‐water exchange in the Regional Ocean Modeling System and expanded to include carbonate chemistry in seabed. The updated model was tested for two sites where benthic flux and porewater concentration measurements were available in the northern Gulf of Mexico hypoxic zone. The calibrated model reproduced the porewater concentration‐depth profiles and benthic fluxes of O2, dissolved inorganic carbon (DIC), TAlk, NO3and NH4. We used the calibrated model to explore the role of benthic fluxes in acidifying bottom water during fair weather and resuspension periods. Under fair weather conditions, model results indicated that bio‐diffusion in sediment, labile material input and sediment porosity have a large control on the importance of benthic flux to bottom water acidification. During resuspension, the model indicated that bottom water acidification would be enhanced due to the sharp increase of the DIC/TAlk ratio of benthic fluxes. To conclude, our model reproduced the seabed‐water column exchange of biologically important solutes and can be used for quantifying the role of benthic fluxes in driving bottom water acidification over continental shelves. 
    more » « less
  5. Abstract Plastics are an important new component of the global sedimentary system, and much concern exists about their transport, fate and impact. This study presents the first system-scale assessment of sedimentary storage of microplastic for an estuary, Narragansett Bay, RI (USA), and the measurements of shoreline and seabed sediments add to the growing body of literature demonstrating high coastal concentrations. Microplastic concentrations in sediments ranged from 396 to over 13,000 MP particles kg −1 dry sediment (DW), comparable to other shoreline and seafloor sites located near urban centers. As previously reported for fine sediment and other pollutants, estuarine plastic storage is extensive in Narragansett Bay, especially within the upper urbanized reaches. Over 16 trillion pieces of plastic weighing near 1000 tonnes is calculated to be stored in surface sediments of the Bay based on a power-law fit. This work highlights that estuaries may serve as a significant filter for plastic pollution, and this trapping may have negative consequences for these valuable, productive ecosystems but offer potential for efficient removal. 
    more » « less