Changes to the tropical eastern North Pacific Intraseasonal Oscillation (ISO) at the end of the 21st century and implications for tropical cyclone (TC) genesis are examined in the Shared Socioeconomic Pathways (SSP585) scenario of the Coupled Model Intercomparison Project phase 6 (CMIP6) data set. Multimodel mean composite low-level wind and precipitation anomalies associated with the leading intraseasonal mode indicate that precipitation amplitude increases while wind amplitude weakens under global warming, consistent with previous studies for the Indo-Pacific warm pool. The eastern North Pacific intraseasonal precipitation/wind pattern also tends to shift southwestward in a warmer climate, associated with weaker positive precipitation anomalies near the coast of Mexico and Central America during the enhanced convection/westerly wind phase. Implications for the modulation of TC genesis by the leading intraseasonal mode are then explored using an empirical genesis potential index (GPI). In the historical simulation, GPI shows positive anomalies in the eastern North Pacific in the convectively enhanced phase of the ISO. The ISO’s modulation of GPI weakens near the coast of Mexico and Central America with warming, associated with a southward shift of GPI anomalies. Further examination of the contribution from individual environmental variables that enter the GPI shows that relative humidity and vorticity changes during ISO events weaken positive GPI anomalies near the Mexican coast with warming and make genesis more favorable to the southwest. The impact of vertical shear anomaly changes is also to favor genesis away from the coast. These results suggest a weaker modulation of TCs near the Mexican Coast by the ISO in a warmer climate.
more »
« less
A Climatology of Extratropical Cyclones Leading to Extreme Weather Events over Central and Eastern North America
Cool-season extreme weather events (EWEs) (i.e., high-impact weather events that are societally disruptive, geographically widespread, exceptionally prolonged, and climatologically infrequent) are typically associated with strong extratropical cyclones (ECs). The opportunity to investigate the genesis locations, tracks, and frequencies of ECs leading to EWEs over central and eastern North America and compare them to those of ordinary ECs forming over and traversing the same region motivates this study. ECs leading to EWEs are separated from ordinary ECs according to the magnitude, areal extent, and duration of their 925-hPa standardized wind speed anomalies in the 0.5° NCEP CFSR dataset. This separation allows for the construction of an October–March 1979–2016 climatology of ECs leading to EWEs over central and eastern North America. The climatology of ECs leading to EWEs over central and eastern North America reveals that these ECs typically form in the lee of the Rocky Mountains, over the south-central United States, and along the east coast of North America at latitudes equatorward of the typical genesis locations of ordinary ECs. ECs leading to EWEs exhibit equatorward-shifted tracks relative to ordinary ECs, likely associated with an equatorward shift in the position of the subtropical or polar-front jet. ECs leading to EWEs form most frequently in November and March, when the seasonal alignment of baroclinic and diabatic forcings is maximized. Similar to ordinary ECs, the genesis locations, tracks, and frequencies of ECs leading to EWEs are partially determined by the states of the Pacific–North American pattern and North Atlantic Oscillation.
more »
« less
- Award ID(s):
- 1656406
- PAR ID:
- 10091405
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 147
- Issue:
- 5
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- p. 1471-1490
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.more » « less
-
Abstract The first 2 weeks of December 2021 were exceptionally active for severe convective storms across the central and eastern United States. While previous work has indicated that this was related to the existence of a negative phase of the Pacific–North American pattern, we demonstrate that such a pattern was configured via dynamical linkages between multiple extratropical cyclogenesis events in the western North Pacific, the recurvature of Typhoon Nyatoh, and the subsequent phase evolution of the North Pacific jet. These processes were found to aid in the excitation of Rossby wave packets and the amplification of upper-level flow downstream over the Pacific, ultimately configuring synoptic-scale weather regimes supportive of anomalous high-frequency and high-intensity severe convective weather in the contiguous United States. In addition, abnormally warm Gulf of America/Gulf of Mexico sea surface temperatures, aided by a period of antecedent synoptic-scale subsidence, played a critical role in enhancing convective instability in the surface warm sector. This work underscores the importance of cataloging these events for purposes of examining (and potentially enhancing) predictability. Significance StatementThe first half of December 2021 recorded one of the most active cool-season severe weather periods in the United States, resulting in two billion-dollar convective outbreaks on 10 and 15 December. This study links these extreme events to upstream dynamical processes over the North Pacific, including extratropical cyclogenesis, the recurvature of Typhoon Nyatoh, and the retraction of the North Pacific jet. These processes amplified downstream flow and configured synoptic environments favorable for severe weather across the United States. Additionally, anomalously warm Gulf of America/Gulf of Mexico sea surface temperatures enhanced convective instability. By identifying these key precursors, this work highlights the potential for improved anticipation of extended-range severe weather likelihood—particularly during the cool season—when such events remain rare but highly impactful.more » « less
-
Abstract Previous studies have suggested possible connections between the decreasing Arctic sea‐ice and long‐duration (>5 days, LD) cold weather events in Eurasia and North America. Here we document the occurrences of weather regimes in winter by their durations, based on the empirical orthogonal function analyses of the daily geopotential height fields at 500 hPa (z500) for the months of November–March 1979–2019. Significant changes in the occurrence frequency and persistence of Ural ridge (UR) and weak stratospheric polar vortex (PV) were found between winters following high and low autumn sea‐ice covers (SIC) in the Barents and Kara seas. It is shown that a strengthening of the UR is accompanied with a weakening of the PV, and a weak PV favors Greenland ridge (GR). Cold spells in East Asia persist for 5 more days after an LDUR. Cold spells from Canada to the U.S. occur 2–5 days after an LD Ural trough (UT) and are associated with a z500 anomaly dipole centered over Alaska (+) and Hudson Bay (−). Cold spells in the eastern U.S. occur 1–4 days after an LDGR due to circulations resembling the Pacific‐North America pattern. Increased occurrences of UR in winter are associated with a decreased eastward propagation of synoptic waves from the North Atlantic to Japan and the North Pacific.more » « less
-
Abstract This study investigates the relative roles of sea surface temperature–forced climate changes and weather variability in driving the observed eastward shift of Atlantic hurricane tracks over the period from 1970 to 2021. A 10-member initial condition ensemble with a ∼25-km horizontal resolution tropical cyclone permitting atmospheric model (GFDL AM2.5-C360) with identical sea surface temperature and radiative forcing time series was analyzed in conjunction with historical hurricane track observations. While a frequency increase was recovered by all the simulations, the observed multidecadal eastward shift in tracks was not robust across the ensemble members, indicating that it included a substantial contribution from weather-scale variability. A statistical model was developed to simulate expected storm tracks based on genesis location and steering flow, and it was used to conduct experiments testing the roles of changing genesis location and changing steering flow in producing the multidecadal weather-driven shifts in storm tracks. These experiments indicated that shifts in genesis location were a substantially larger driver of these multidecadal track changes than changes in steering flow. The substantial impact of weather on tracks indicates that there may be limited predictability for multidecadal track changes like those observed, although basinwide frequency has greater potential for prediction. Additionally, understanding changes in genesis location appears essential to understanding changes in track location. Significance StatementFrom the 1970s to the present, there has been an increase in the frequency of North Atlantic hurricanes, but they have also shifted in location to the east, away from land. We explore whether this shift in hurricanes’ locations was caused by climatic factors or randomness to understand if and how these trends will persist. We also consider whether the shift was due to a change in where hurricanes started or how they moved over their lifespan. Analyzing data from observed and simulated hurricanes, we find that the shift was made more likely by climate factors, but ultimately occurred due to random variability in the hurricanes’ starting locations. These results suggest a higher uncertainty in the future location and impact of hurricanes and highlight the importance of studying why hurricanes originate where they do.more » « less
An official website of the United States government
