skip to main content


Title: Building Simple Games With BRIDGES
Many newcomers to programming and computational thinking have been brought up on interactive, gamified learning environments. Introductory computer science courses at the university level need to dig deeper into these topics, but must do so with similarly engaging technologies and projects. To address this need, we have built a framework for a grid-based game API with event-based blocking and continuous non-blocking interfaces. The framework abstracts away much of the complexity of inputs and rendering and exposes a simple game grid similar to a 2D array indexed by rows and columns. As such, our project helps reinforce basic computing concepts (arrays, loops, OOP, recursion) with a customizable and engaging game interface. We have discussed the valuable influence of visual representations of student's data structures using BRIDGES in previous publications, and believe our game API can provide significance and intrigue for students in introductory courses and beyond. Our Bridges Games App website (http://bridges-games.herokuapp.com/) presents descriptions and instructions.  more » « less
Award ID(s):
1245841
NSF-PAR ID:
10091592
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
1288 to 1288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rise in CS enrollments in the past few years has also resulted in a more diverse population of learners that have different expectations, motivations and interests, making it important to provide relevant learning materials in early foundational courses. Grounding Computer Science concepts in reality by solving important real-world or fun problems are keys to increasing students’ motivation and engagement in computing, which may help improve student retention and success. This workshop provides instructors with a hands-on introduction to BRIDGES, a software infrastructure for programming assignments in early computer science courses, such as CS1, CS2, data structures, and algorithm analysis. BRIDGES provides the tools for creating engaging programming assignments, including: (1) a simplified API for accessing real-world data, such as those from social networks, entertainment (songs, movies), science, engineering (USGIS Earthquakes, elevation maps), geography (OpenStreet maps), and literature (Project Gutenberg), (2) creating visualizations of the data, (3) an easy to use API for game-based assignments, and, (4) algorithm benchmarking. Workshop attendees will engage in hands-on experience using BRIDGES with multiple datasets, have the opportunity to discuss the challenges they face in their own courses, and how BRIDGES can be used in their own courses. Using BRIDGES in data structures, algorithms, and other courses have shown improved retention of CS knowledge and better student performance in follow-on courses, when compared to students from other sections of the same course. BRIDGES has impacted nearly 2000 students across 20 institutions since its inception 5 years ago. A repository of BRIDGES assignments is now maintained for instructors using BRIDGES in their classes. 
    more » « less
  2. This workshop provides instructors with a hands-on introduction to BRIDGES, a software infrastructure for programming assignments in early computer science courses, including introductory programming (CS1, CS2), data structures, and algorithm analysis. BRIDGES provides capabilities for creating more engaging programming assignments, including: (1) a simplified API for accessing real-world data sets, including from social networks; scientific, government, and civic organizations; and movie, music, and literature collections; (2) interesting visualizations of the data, (3) an easy to use API that supports creation of games that leverage real-world data, and, (4) algorithm benchmarking. Workshop attendees will engage in hands-on experience with BRIDGES with multiple datasets and will have the opportunity to discuss how BRIDGES can be used in their own courses. 
    more » « less
  3. Despite increasing enrollments in CS in recent years, retention of CS majors to meet current and future workforce needs remains a major concern. Grounding Computer Science concepts by solving important real-world problems or fun problems can be keys to increasing students’ motivation and engagement in computing, and may provide a path to improving retention in CS programs. This tutorial provides instructors with a hands-on introduction to BRIDGES, a software infrastructure for programming assignments in early computer science courses, including introductory programming (CS1, CS2), data structures, and algorithm analysis. BRIDGES provides capabilities for creating engaging programming assignments, including: (1) a simplified API for accessing real-world data sets}, including social networks; scientific, government, and civic organization data; and movie, music, and literature collections; (2) interesting visualizations of the data, (3) an easy to use API that supports creation of games, and, (4) algorithm benchmarking. Workshop attendees will engage in hands-on experience with BRIDGES and will have the opportunity to discuss how BRIDGES can be used in their own courses. 
    more » « less
  4. Although undergraduate enrollment in Computer Science has remained strong and seen substantial increases in the past decade, retention of majors remains a significant concern, particularly for students at the freshman and sophomore level that are tackling foundational courses on algorithms and data structures. In this work, we present BRIDGES, a software infrastructure designed to enable the creation of more engaging assignments in introductory data structures courses by providing students with a simplified API that allows them to populate their own data structure implementations with live, real-world, and interesting data sets, such as those from popular social networks (e.g., Twitter, Facebook). BRIDGES also provides the ability for students to create and explore {\em visualizations} of the execution of the data structures that they construct in their course assignments, which can promote better understanding of the data structure and its underlying algorithms; these visualizations can be easily shared via a weblink with peers, family, and instructional staff. In this paper, we present the BRIDGES system, its design, architecture and its use in our data structures course over two semesters. 
    more » « less
  5. N/A (Ed.)
    BRIDGES is a software framework for creating engaging assignments for required courses such as data structures and algorithms. It provides students with a simplified API that populates their own data structure implementations with live and real-world data, and provides the ability for students to easily visualize the data structures they create as part of routine classroom exercises. The objective is to use the infrastructure to promote a better understanding of the data structure and its underlying algorithms. This report describes the BRIDGES infrastructure and provides evaluation data col- lected over the first five years of the project. In the first 2 years, as we were developing the BRIDGES projects, our focus was on gathering data to assess whether the addi- tion of the BRIDGES exercises had an effect on student retention of core concepts in data structures; and throughout the 5-year duration of the project, student interest and faculty feedback were collected online and anonymously. A mixed method design was used to evaluate the project impact. A quasiexperimental design compared stu- dent cohorts who were enrolled in comparable course sections that used BRIDGES with those that did not. Qualitative and quantitative measures were developed and used together with course grades and grade point averages. Interest and relevance in BRIDGES programming assignments was assessed with additional survey data from students and instructors. Results showed that students involved in BRIDGES projects demonstrated larger gains in knowledge of data structures compared to stu- dents enrolled in comparable course sections, as well as long-term benefits in their performance in four follow-on required courses. Survey responses indicated that some investment of time was needed to use BRIDGES, but the extra efforts were associated with several notable outcomes. Students and instructors had positive perceptions of the value of engaging in BRIDGES projects. BRIDGES can become a tool to get students more engaged in critical foundational courses, demonstrating relevance and context to today’s computational challenges. 
    more » « less