skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: A bio-conjugated chitosan wrapped CNT based 3D nanoporous architecture for separation and inactivation of Rotavirus and Shigella waterborne pathogens
The United Nations (UN) estimates that more than one billion people in this world do not have access to safe drinking water due to microbial hazards and it kills more than 7.6 million children every year via waterborne diseases. Driven by the need for the removal and inactivation of waterborne pathogens in drinking water, we report the chemical design and details of microscopic characterization of a bio-conjugated chitosan attached carbon nanotube based three dimensional (3D) nanoporous architecture, which has the capability for effective separation and complete disinfection of waterborne pathogens from environmental water samples. In the reported design, chitosan, a biodegradable antimicrobial polysaccharide with an architecture-forming ability has been used for the formation of 3D pores as channels for water passage, as well as to increase the permeability on the inner and outer architectures for killing Rotavirus and Shigella waterborne pathogens. On the other hand, due to their large surface area, CNTs have been wrapped by chitosan to enhance the adsorption capability of the architecture for the separation and removal of pathogens from water. The reported data show that the anti- Rotavirus VP7 antibody and LL-37 antimicrobial peptide conjugated chitosan–CNT architecture can be used for efficient separation, identification and 100% eradication of Rotavirus and Shigella waterborne pathogens from water samples of different sources. A detailed mechanism for the separation and inactivation of waterborne pathogens using the bio-conjugated chitosan based 3D architecture has been discussed using microscopic and spectroscopic studies. Reported experimental data demonstrate that the multifunctional bio-conjugated 3D architecture has good potential for use in waterborne pathogen separation and inactivation technology.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Page Range / eLocation ID:
9522 to 9531
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thallium(I) (Tl(I)) pollution has become a pressing environmental issue due to its harmful effect on human health and aquatic life. Effective technology to remove Tl(I) ions from drinking water can offer immediate societal benefits especially in the developing countries. In this study, a bio-adsorbent system based on nitro-oxidized nanocellulose (NOCNF) extracted from sorghum stalks was shown to be a highly effective Tl(I) removal medium. The nitro-oxidation process (NOP) is an energy-efficient, zero-waste approach that can extract nanocellulose from any lignocellulosic feedstock, where the effluent can be neutralized directly into a fertilizer without the need for post-treatment. The demonstrated NOCNF adsorbent exhibited high Tl(I) removal efficiency (>90% at concentration < 500 ppm) and high maximum removal capacity (Qm = 1898 mg/g using the Langmuir model). The Tl(I) adsorption mechanism by NOCNF was investigated by thorough characterization of NOCNF-Tl floc samples using spectroscopic (FTIR), diffraction (WAXD), microscopic (SEM, TEM, and AFM) and zeta-potential techniques. The results indicate that adsorption occurs mainly due to electrostatic attraction between cationic Tl(I) ions and anionic carboxylate groups on NOCNF, where the adsorbed Tl(I) sites become nuclei for the growth of thallium oxide nanocrystals at high Tl(I) concentrations. The mineralization process enhances the Tl(I) removal efficiency, and the mechanism is consistent with the isotherm data analysis using the Freundlich model. 
    more » « less
  2. Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in practical applications that include surfactants, lubricants, and firefighting foams due to their thermal stability and chemical inertness. Recent studies have revealed that PFAS were detected in groundwater and even drinking water systems which can cause severe environmental and health issues. While adsorbents with a large specific surface area have demonstrated effective removal of PFAS from water, their capability in desorbing the retained PFAS has been often neglected despite its critical role in regeneration for reuse. Further, they have demonstrated a relatively lower adsorption capacity for PFAS with a short fluoroalkyl chain length. To overcome these limitations, electric field-aided adsorption has been explored. In this work, reversible adsorption and desorption of PFAS dissolved in water upon alternating voltage is reported. An inexpensive graphite adsorbent is fabricated by using a simple press resulting in a mesoporous structure with a BET surface area of 132.9 ± 10.0 m 2 g −1 . Electric field-aided adsorption and desorption experiments are conducted by using a custom-made cell consisting of two graphite electrodes placed in parallel in a polydimethylsiloxane container. Unlike the conventional sorption process, a graphite electrode exhibits a higher adsorption capacity for PFAS with a short fluoroalkyl chain (perfluoropentanoic acid, PFPA) in comparison to that with a long fluoroalkyl chain (perfluorooctanoic acid, PFOA). Upon alternating the voltage to a negative value, the retained PFPA or PFOA is released into the surrounding water. Finally, we engineered a device module mounted on a gravity-assisted apparatus to demonstrate electrosorption of PFAS and collection of high purity water. 
    more » « less
  3. Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH 4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons. 
    more » « less
  4. Abstract

    Drinking water disinfection by‐products (DBPs), including the ubiquitous trihalomethanes (THMs), are formed during the treatment of water with disinfectants (e.g., chlorine, chloramines) to produce and distribute potable water. Brominated THMs (Br‐THMs) are activated to mutagens via glutathioneS‐transferase theta 1 (GSTT1); however, iodinated THMs (I‐THMs) have never been evaluated for activation by GSTT1. Among the I‐THMs, only triiodomethane (iodoform) has been tested previously for mutagenicity inSalmonellaand was positive (in the absence of GSTT1) in three strains (TA98, TA100, and BA13), all of which have error‐prone DNA repair (pKM101). We evaluated five I‐THMs (chlorodiiodomethane, dichloroiodomethane, dibromoiodomethane, bromochloroiodomethane, and triiodomethane) for mutagenicity inSalmonellastrain RSJ100, which expresses GSTT1, and its homologue TPT100, which does not; neither strain has pKM101. We also evaluated chlorodiiodo‐, dichloroiodo‐, and dibromoiodo‐methanes in strain TA100 +/− rat liver S9 mix; TA100 has pKM101. None was mutagenic in any of the strains. The I‐THMs were generally more cytotoxic than their brominated and chlorinated analogues but less cytotoxic than analogous trihalonitromethanes tested previously. All five I‐THMs showed similar thresholds for cytotoxicity at ~2.5 μmoles/plate, possibly due to release of iodine, a well‐known antimicrobial. Although none of these I‐THMs was activated by GSTT1, iodoform appears to be the only I‐THM that is mutagenic inSalmonella, only in strains deficient in nucleotide excision repair (uvrB) and having pKM101. Given that only iodoform is mutagenic among the I‐THMs and is generally present at low concentrations in drinking water, the I‐THMs likely play little role in the mutagenicity of drinking water.

    more » « less
  5. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less