skip to main content


Title: Gables: A Roofline Model for Mobile SoCs
Over a billion mobile consumer system-on-chip (SoC) chipsets ship each year. Of these, the mobile consumer market undoubtedly involving smartphones has a significant market share. Most modern smartphones comprise of advanced SoC architectures that are made up of multiple cores, GPS, and many different programmable and fixed-function accelerators connected via a complex hierarchy of interconnects with the goal of running a dozen or more critical software usecases under strict power, thermal and energy constraints. The steadily growing complexity of a modern SoC challenges hardware computer architects on how best to do early stage ideation. Late SoC design typically relies on detailed full-system simulation once the hardware is specified and accelerator software is written or ported. However, early-stage SoC design must often select accelerators before a single line of software is written. To help frame SoC thinking and guide early stage mobile SoC design, in this paper we contribute the Gables model that refines and retargets the Roofline model-designed originally for the performance and bandwidth limits of a multicore chip-to model each accelerator on a SoC, to apportion work concurrently among different accelerators (justified by our usecase analysis), and calculate a SoC performance upper bound. We evaluate the Gables model with an existing SoC and develop several extensions that allow Gables to inform early stage mobile SoC design.  more » « less
Award ID(s):
1815656
PAR ID:
10091738
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)
Page Range / eLocation ID:
317 to 330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuromorphic computing is an emerging field with the potential to offer performance and energy-efficiency gains over traditional machine learning approaches. Most neuromorphic hardware, however, has been designed with limited concerns to the problem of integrating it with other components in a heterogeneous System-on-Chip (SoC). Building on a state-of-the-art reconfigurable neuromorphic architecture, we present the design of a neuromorphic hardware accelerator equipped with a programmable interface that simplifies both the integration into an SoC and communication with the processor present on the SoC. To optimize the allocation of on-chip resources, we develop an optimizer to restructure existing neuromorphic models for a given hardware architecture, and perform design-space exploration to find highly efficient implementations. We conduct experiments with various FPGA-based prototypes of many-accelerator SoCs, where Linux-based applications running on a RISC-V processor invoke Pareto-optimal implementations of our accelerator alongside third-party accelerators. These experiments demonstrate that our neuromorphic hardware, which is up to 89× faster and 170× more energy efficient after applying our optimizer, can be used in synergy with other accelerators for different application purposes.

     
    more » « less
  2. Data movement latency when using on-chip accelerators in emerging heterogeneous architectures is a serious performance bottleneck. While hardware/software mechanisms such as peer-to-peer DMA between producer/consumer accelerators allow bypassing main memory and significantly reduce main memory contention, schedulers in both the hardware and software domains remain oblivious to their presence. Instead, most contemporary schedulers tend to be deadline-driven, with improved utilization and/or throughput serving as secondary or co-primary goals. This lack of focus on data communication will only worsen execution times as accelerator latencies reduce. In this paper, we present RELIEF (RElaxing Least-laxIty to Enable Forwarding), an online least laxity-driven accelerator scheduling policy that relieves memory pressure in accelerator-rich architectures via data movement-aware scheduling. RELIEF leverages laxity (time margin to a deadline) to opportunistically utilize available hardware data forwarding mechanisms while minimizing quality-of-service (QoS) degradation and unfairness. RELIEF achieves up to 50% more forwards compared to state-of- the-art policies, reducing main memory traffic and energy consumption by up to 32% and 18%, respectively. At the same time, RELIEF meets 14% more task deadlines on average and reduces worst-case deadline violation by 14%, highlighting QoS and fairness improvements. 
    more » « less
  3. The energy and latency demands of critical workload execution, such as object detection, in embedded systems vary based on the physical system state and other external factors. Many recent mobile and autonomous System-on-Chips (SoC) embed a diverse range of accelerators with unique power and performance characteristics. The execution flow of the critical workloads can be adjusted to span into multiple accelerators so that the trade-off between performance and energy fits to the dynamically changing physical factors. In this study, we propose running neural network (NN) inference on multiple accelerators of an SoC. Our goal is to enable an energy-performance trade-off with an by distributing layers in a NN between a performance- and a power-efficient accelerator. We first provide an empirical modeling methodology to characterize execution and inter-layer transition times. We then find an optimal layers-to-accelerator mapping by representing the trade-off as a linear programming optimization constraint. We evaluate our approach on the NVIDIA Xavier AGX SoC with commonly used NN models. We use the Z3 SMT solver to find schedules for different energy consumption targets, with up to 98% prediction accuracy. 
    more » « less
  4. null (Ed.)
    With the growing performance and wide application of deep neural networks (DNNs), recent years have seen enormous efforts on DNN accelerator hardware design for platforms from mobile devices to data centers. The systolic array has been a popular architectural choice for many proposed DNN accelerators with hundreds to thousands of processing elements (PEs) for parallel computing. Systolic array-based DNN accelerators for datacenter applications have high power consumption and nonuniform workload distribution, which makes power delivery network (PDN) design challenging. Server-class multicore processors have benefited from distributed on-chip voltage regulation and heterogeneous voltage regulation (HVR) for improving energy efficiency while guaranteeing power delivery integrity. This paper presents the first work on HVR-based PDN architecture and control for systolic array-based DNN accelerators. We propose to employ a PDN architecture comprising heterogeneous on-chip and off-chip voltage regulators and multiple power domains. By analyzing patterns of typical DNN workloads via a modeling framework, we propose a DNN workload-aware dynamic PDN control policy to maximize system energy efficiency while ensuring power integrity. We demonstrate significant energy efficiency improvements brought by the proposed PDN architecture, dynamic control, and power gating, which lead to a more than five-fold reduction of leakage energy and PDN energy overhead for systolic array DNN accelerators. 
    more » « less
  5. Artificial intelligence (AI) based wearable applications collect and process a significant amount of streaming sensor data. Transmitting the raw data to cloud processors wastes scarce energy and threatens user privacy. Wearable edge AI devices should ideally balance two competing requirements: (1) maximizing the energy efficiency using targeted hardware accelerators and (2) providing versatility using general-purpose cores to support arbitrary applications. To this end, we present an open-source domain-specific programmable system-on-chip (SoC) that combines a RISC-V core with a meticulously determined set of accelerators targeting wearable applications. We apply the proposed design method to design an FPGA prototype and six real-life use cases to demonstrate the efficacy of the proposed SoC. Thorough experimental evaluations show that the proposed SoC provides up to 9.1x faster execution and up to 8.9x higher energy efficiency than software implementations in FPGA while maintaining programmability. 
    more » « less