skip to main content

Title: Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data
Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model more » on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively. « less
Authors:
; ; ; ;
Award ID(s):
1800768
Publication Date:
NSF-PAR ID:
10091814
Journal Name:
Sensors
Volume:
19
Issue:
7
Page Range or eLocation-ID:
1486
ISSN:
1424-8220
Sponsoring Org:
National Science Foundation
More Like this
  1. An efficient feature selection method can significantly boost results in classification problems. Despite ongoing improvement, hand-designed methods often fail to extract features capturing high- and mid-level representations at effective levels. In machine learning (Deep Learning), recent developments have improved upon these hand-designed methods by utilizing automatic extraction of features. Specifically, Convolutional Neural Networks (CNNs) are a highly successful technique for image classification which can automatically extract features, with ongoing learning and classification of these features. The purpose of this study is to detect hydraulic structures (i.e., bridges and culverts) that are important to overland flow modeling and environmental applications. Themore »dataset used in this work is a relatively small dataset derived from 1-m LiDAR-derived Digital Elevation Models (DEMs) and National Agriculture Imagery Program (NAIP) aerial imagery. The classes for our experiment consist of two groups: the ones with a bridge/culvert being present are considered "True", and those without a bridge/culvert are considered "False". In this paper, we use advanced CNN techniques, including Siamese Neural Networks (SNNs), Capsule Networks (CapsNets), and Graph Convolutional Networks (GCNs), to classify samples with similar topographic and spectral characteristics, an objective which is challenging utilizing traditional machine learning techniques, such as Support Vector Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture Model (GMM). The advanced CNN-based approaches combined with data pre-processing techniques (e.g., data augmenting) produced superior results. These approaches provide efficient, cost-effective, and innovative solutions to the identification of hydraulic structures.« less
  2. Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometrymore »Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event.« less
  3. We apply deep convolutional neural networks (CNNs) to estimate wave breaking type (e.g., non-breaking, spilling, plunging) from close-range monochrome infrared imagery of the surf zone. Image features are extracted using six popular CNN architectures developed for generic image feature extraction. Logistic regression on these features is then used to classify breaker type. The six CNN-based models are compared without and with augmentation, a process that creates larger training datasets using random image transformations. The simplest model performs optimally, achieving average classification accuracies of 89% and 93%, without and with image augmentation respectively. Without augmentation, average classification accuracies vary substantially withmore »CNN model. With augmentation, sensitivity to model choice is minimized. A class activation analysis reveals the relative importance of image features to a given classification. During its passage, the front face and crest of a spilling breaker are more important than the back face. For a plunging breaker, the crest and back face of the wave are most important, which suggests that CNN-based models utilize the distinctive ‘streak’ temperature patterns observed on the back face of plunging breakers for classification.« less
  4. This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach withmore »a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance.« less
  5. This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach withmore »a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. Index Terms—Magnetic Resonance Imaging; Batch Normalization; Exponential Linear Units« less