skip to main content

Title: An $\ell_{\infty}$ eigenvector perturbation bound and its application to robust covariance estimation
In statistics and machine learning, we are interested in the eigenvectors (or singular vectors) of certain matrices (e.g.\ covariance matrices, data matrices, etc). However, those matrices are usually perturbed by noises or statistical errors, either from random sampling or structural patterns. The Davis-Kahan $\sin \theta$ theorem is often used to bound the difference between the eigenvectors of a matrix $A$ and those of a perturbed matrix $\widetilde{A} = A + E$, in terms of $\ell_2$ norm. In this paper, we prove that when $A$ is a low-rank and incoherent matrix, the $\ell_{\infty}$ norm perturbation bound of singular vectors (or eigenvectors in the symmetric case) is smaller by a factor of $\sqrt{d_1}$ or $\sqrt{d_2}$ for left and right vectors, where $d_1$ and $d_2$ are the matrix dimensions. The power of this new perturbation result is shown in robust covariance estimation, particularly when random variables have heavy tails. There, we propose new robust covariance estimators and establish their asymptotic properties using the newly developed perturbation bound. Our theoretical results are verified through extensive numerical experiments.
Authors:
; ;
Award ID(s):
1712591 1662139
Publication Date:
NSF-PAR ID:
10091880
Journal Name:
Journal of machine learning research
Volume:
18
Page Range or eLocation-ID:
1-42
ISSN:
1532-4435
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the low-rank phase retrieval problem, where our goal is to recover a $d_1\times d_2$ low-rank matrix from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We propose a solution to this problem using the recently introduced technique of anchored regression. This approach uses two different types of convex relaxations: we replace the quadratic equality constraints for the phaseless measurements by a search over a polytope and enforce the rank constraint through nuclear norm regularization. The result is a convex program in the space of $d_1 \times d_2$ matrices. We analyze two specific scenarios. In the first, the target matrix is rank-$1$, and the observations are structured to correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we observe the magnitudes of the inner products against a series of independent Gaussian random matrices. In each of these problems, we show that anchored regression returns an accurate estimate from a near-optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We also showmore »how to create such an anchor in the phaseless blind deconvolution problem from an optimal number of measurements and present a partial result in this direction for the general rank problem.« less
  2. We study the low rank regression problem $\my = M\mx + \epsilon$, where $\mx$ and $\my$ are d1 and d2 dimensional vectors respectively. We consider the extreme high-dimensional setting where the number of observations n is less than d1+d2. Existing algorithms are designed for settings where n is typically as large as $\Rank(M)(d_1+d_2)$. This work provides an efficient algorithm which only involves two SVD, and establishes statistical guarantees on its performance. The algorithm decouples the problem by first estimating the precision matrix of the features, and then solving the matrix denoising problem. To complement the upper bound, we introduce new techniques for establishing lower bounds on the performance of any algorithm for this problem. Our preliminary experiments confirm that our algorithm often out-performs existing baselines, and is always at least competitive.
  3. Despite the wide empirical success of modern machine learning algorithms and models in a multitude of applications, they are known to be highly susceptible to seemingly small indiscernible perturbations to the input data known as \emph{adversarial attacks}. A variety of recent adversarial training procedures have been proposed to remedy this issue. Despite the success of such procedures at increasing accuracy on adversarially perturbed inputs or \emph{robust accuracy}, these techniques often reduce accuracy on natural unperturbed inputs or \emph{standard accuracy}. Complicating matters further, the effect and trend of adversarial training procedures on standard and robust accuracy is rather counter intuitive and radically dependent on a variety of factors including the perceived form of the perturbation during training, size/quality of data, model overparameterization, etc. In this paper we focus on binary classification problems where the data is generated according to the mixture of two Gaussians with general anisotropic covariance matrices and derive a precise characterization of the standard and robust accuracy for a class of minimax adversarially trained models. We consider a general norm-based adversarial model, where the adversary can add perturbations of bounded ellp norm to each input data, for an arbitrary p greater than one. Our comprehensive analysis allows usmore »to theoretically explain several intriguing empirical phenomena and provide a precise understanding of the role of different problem parameters on standard and robust accuracies.« less
  4. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(logmore »m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.« less
  5. We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50.