skip to main content

Title: Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes
ABSTRACT Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N -ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N -ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N -ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intrinsically disordered proteins are frequent targets for functional regulation through post-translational modification due to their high accessibility to modifying enzymes and the strong influence of changes in primary structure on their chemical properties. While lysine N ε -acetylation was first observed as a common modification of histone tails, proteomic data suggest that lysine acetylation is ubiquitous among both nuclear and cytosolic proteins. However, compared with our biophysical understanding of the other common post-translational modifications, mechanistic studies to document how lysine N ε -acetyl marks are placed, utilized to transduce signals, and eliminated when signals need to be turned off, have not kept pace with proteomic discoveries. Herein we report a nuclear magnetic resonance method to monitor N ε -lysine acetylation through enzymatic installation of a 13 C-acetyl probe on a protein substrate, followed by detection through 13 C direct-detect spectroscopy. We demonstrate the ease and utility of this method using histone H3 tail acetylation as a model. The clearest advantage to this method is that it requires no exogenous tags that would otherwise add steric bulk, change the chemical properties of the modified lysine, or generally interfere with downstream biochemical processes. The non-perturbing nature of this tagging method is beneficial for application in any system where changes to local structure and chemical properties beyond those imparted by lysine modification are unacceptable, including intrinsically disordered proteins, bromodomain containing protein complexes, and lysine deacetylase enzyme assays. 
    more » « less
  2. Protein acylation, exemplified by lysine acetylation, is a type of indispensable and widespread protein posttranslational modification in eukaryotes. Functional annotation of various lysine acetyltransferases (KATs) is critical to understanding their regulatory roles in abundant biological processes. Traditional radiometric and immunosorbent assays have found broad use in KAT study but have intrinsic limitations. Designing acyl–coenzyme A (CoA) reporter molecules bearing chemoselective chemical warhead groups as surrogates of the native cofactor acetyl-CoA for bioorthogonal labeling of KAT substrates has come into a technical innovation in recent years. This chemical biology platform equips molecular biologists with empowering tools in acyltransferase activity detection and substrate profiling. In the bioorthogonal labeling, protein substrates are first enzymatically modified with a functionalized acyl group. Subsequently, the chemical warhead on the acyl chain conjugates with either an imaging chromophore or an affinity handle or any other appropriate probes through an orthogonal chemical ligation. This bioorganic strategy reformats the chemically inert acetylation and acylation marks into a chemically maneuverable functionality and generates measurable signals without recourse to radioisotopes or antibodies. It offers ample opportunities for facile sensitive detection of KAT activity with temporal and spatial resolutions as well as allows for chemoproteomic profiling of protein acetylation pertaining to specific KATs of interest on the global scale. We reviewed here the past and current advances in bioorthogonal protein acylations and highlighted their wide-spectrum applications. We also discussed the design of other related acyl-CoA and CoA-based chemical probes and their deployment in illuminating protein acetylation and acylation biology.

    more » « less
  3. Abstract Protein posttranslational modification (PTM) is a biochemical mechanism benefitting cellular adaptation to dynamic intracellular and environmental conditions. Recently, several acylation marks have been identified as new protein PTMs occurring on specific lysine residues in mammalian cells: isobutyrylation, methacrylation, benzoylation, isonicotinylation, and lactylation. These acylation marks were initially discovered to occur on nucleosomal histones, but they potentially occur as prevalent biomarkers on non‐histone proteins as well. The existence of these PTMs is a downstream consequence of metabolism and demonstrates the intimate crosstalk between active cellular metabolites and regulation of protein function. Emerging evidence indicates that these acylation marks on histones affect DNA transcription and are functionally distinct from the well‐studied lysine acetylation. Herein, we discuss enzymatic regulation and metabolic etiology of these acylations, 'reader' proteins that recognize different acylations, and their possible physiological and pathological functions. Several of these modifications correlate with other well‐studied acylations and fine‐tune the regulation of gene expression. Overall, findings of these acylation marks reveal new molecular links between metabolism and epigenetics and open up many questions for future investigation. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. 
    more » « less
  4. Abstract

    The side‐chain acetylation of lysine residues in histones and non‐histone proteins catalyzed by lysine acetyltransferases (KATs) represents a widespread posttranslational modification (PTM) in the eukaryotic cells. Lysine acetylation plays regulatory roles in major cellular pathways inside and outside the nucleus. In particular, KAT‐mediated histone acetylation has an effect on all DNA‐templated epigenetic processes. Aberrant expression and activation of KATs are commonly observed in human diseases, especially cancer. In recent years, the study of KAT functions in biology and disease has greatly benefited from chemical biology tools and strategies. In this Review, we present the past and current accomplishments in the design of chemical biology approaches for the interrogation of KAT activity and function. These methods and probes are classified according to their mechanisms of action and respective applications, with both strengths and limitations discussed.

    more » « less
  5. Li, Zhiming (Ed.)

    Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.

    more » « less