skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A direct nuclear magnetic resonance method to investigate lysine acetylation of intrinsically disordered proteins
Intrinsically disordered proteins are frequent targets for functional regulation through post-translational modification due to their high accessibility to modifying enzymes and the strong influence of changes in primary structure on their chemical properties. While lysine N ε -acetylation was first observed as a common modification of histone tails, proteomic data suggest that lysine acetylation is ubiquitous among both nuclear and cytosolic proteins. However, compared with our biophysical understanding of the other common post-translational modifications, mechanistic studies to document how lysine N ε -acetyl marks are placed, utilized to transduce signals, and eliminated when signals need to be turned off, have not kept pace with proteomic discoveries. Herein we report a nuclear magnetic resonance method to monitor N ε -lysine acetylation through enzymatic installation of a 13 C-acetyl probe on a protein substrate, followed by detection through 13 C direct-detect spectroscopy. We demonstrate the ease and utility of this method using histone H3 tail acetylation as a model. The clearest advantage to this method is that it requires no exogenous tags that would otherwise add steric bulk, change the chemical properties of the modified lysine, or generally interfere with downstream biochemical processes. The non-perturbing nature of this tagging method is beneficial for application in any system where changes to local structure and chemical properties beyond those imparted by lysine modification are unacceptable, including intrinsically disordered proteins, bromodomain containing protein complexes, and lysine deacetylase enzyme assays.  more » « less
Award ID(s):
1932730
PAR ID:
10429442
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Molecular Biosciences
Volume:
9
ISSN:
2296-889X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N -ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N -ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N -ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered. 
    more » « less
  2. Abstract Protein acetylation and acylation are widespread post‐translational modifications (PTMs) in eukaryotic and prokaryotic organisms. Histone acetyltransferase (HATs) enzymes catalyze the addition of short‐chain acyl moieties to lysine residues on cellular proteins. Many HAT members are found to be dysregulated in human diseases, especially oncological processes. Screening potent and selective HAT inhibitors has promising application for therapeutic innovation. A biochemical assay for quantification of HAT activity utilizing luminescent output is highly desirable to improve upon limitations associated with the classic radiometric assay formats. Here we report the design of a bioluminescent technological platform for robust and sensitive quantification of HAT activity. This platform utilizes the metabolic enzyme acetyl‐CoA synthetase 1 (ACS1) for a coupled reaction with firefly luciferase to generate luminescent signal relative to the HAT‐catalyzed acetylation reaction. The biochemical assay was implemented in microtiter plate format and our results showed this assay sensitively detected catalytic activity of HAT enzyme p300, accurately measured its steady‐state kinetic parameters of histone acetylation and measured the inhibitory potency of HAT inhibitor. This platform demonstrated excellent robustness, reproducibility, and signal‐to‐background ratios, with a screening window Z’=0.79. Our new bioluminescent design provides an alternative means for HAT enzymatic activity quantitation and HAT inhibitor screening. 
    more » « less
  3. Protein intrinsically disordered regions (IDRs) are often targets of combinatorial post-translational modifications (PTMs) that serve to regulate protein structure and/or function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits – essential components of heterotrimeric G protein complexes – are intrinsically disordered, highly phosphorylated governors of G protein signaling. Here, we demonstrate that the yeast Gγ Ste18 undergoes combinatorial, multi-site phosphorylation within its N-terminal IDR. Phosphorylation at S7 is responsive to GPCR activation and osmotic stress while phosphorylation at S3 is responsive to glucose stress and is a quantitative indicator of intracellular pH. Each site is phosphorylated by a distinct set of kinases and both are also interactive, such that phosphomimicry at one site affects phosphorylation on the other. Lastly, we show that phosphorylation produces subtle yet clear changes in IDR structure and that different combinations of phosphorylation modulate the activation rate and amplitude of the scaffolded MAPK Fus3. These data place Gγ subunits among the growing list of intrinsically disordered proteins that exploit combinatorial post-translational modification to govern signaling pathway output. 
    more » « less
  4. Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC–MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3- hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy. 
    more » « less
  5. Post-translational modifications (PTMs) are reversible chemical modifications that can modulate protein structure and function. Methylation and acetylation are two such PTMs with integral and well-characterized biological roles, including modulation of chromatin structure; and unknown or poorly understood roles, exemplified by the influence of these PTMs on transcription factor structure and function. The need for biological insights into the function of these PTMs motivates the development of a nondestructive and label-free method that enables pursuit of molecular mechanisms. Here, we present a protocol for implementing nuclear magnetic resonance (NMR) methods that allow for unambiguous detection of methylation and acetylation events and demonstrate their utility by observing these marks on histone H3 tail as a model system. We leverage strategic isotopic enrichment of cofactor and peptide for visualization by [1H, 13C]-HSQC and 13C direct-detect NMR measurements. Finally, we present 13C-labeling schemes that facilitate one-dimensional NMR experiments, which combine reduced measurement time relative to two-dimensional spectroscopy with robust filtering of background signals that would otherwise create spectral crowding or limit detection of low-abundance analytes. 
    more » « less