skip to main content


Title: An H(div)-conforming Finite Element Method for Biot’s Consolidation Model
An H(div)-conforming finite element method for the Biot’s consolidation mo- del is developed, with displacements and fluid velocity approximated by elements from BDM_k space. The use of H(div)-conforming elements for flow variables ensures the local mass conservation. In the H(div)-conforming approximation of displacement, the tan- gential components are discretised in the interior penalty discontinuous Galerkin frame- work,and the normal components across the element interfaces are continuous. Having introduced a spatial discretisation, we develop a semi-discrete scheme and a fully dis- crete scheme,prove their unique solvability and establish optimal error estimates for each variable.  more » « less
Award ID(s):
1700328 1831950
NSF-PAR ID:
10092054
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
East Asian Journal on Applied Mathematics
Volume:
9
Issue:
3
ISSN:
2079-7370
Page Range / eLocation ID:
558-579
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A finite element elasticity complex on tetrahedral meshes and the corresponding commutative diagram are devised. The H 1 H^1 conforming finite element is the finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H ( inc ) H(\operatorname {inc}) -conforming finite element of minimum polynomial degree 6 6 for symmetric tensors is the focus of this paper. Our construction appears to be the first H ( inc ) H(\operatorname {inc}) -conforming finite elements on tetrahedral meshes without further splitting. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc \operatorname {inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition. The trace of the inc \operatorname {inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Two-dimensional smooth finite element Hessian complex and div ⁡ div \operatorname {div}\operatorname {div} complex are constructed. 
    more » « less
  2. We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H 1 , H (curl), or H (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems. 
    more » « less
  3. Abstract

    We construct new families ofdirectserendipity anddirectmixed finite elements on general planar, strictly convex polygons that areH1andH(div) conforming, respectively, and possess optimal order of accuracy for any order. They have a minimal number of degrees of freedom subject to the conformity and accuracy constraints. The name arises because the shape functions are defineddirectlyon the physical elements, i.e., without using a mapping from a reference element. The finite element shape functions are defined to be the full spaces of scalar or vector polynomials plus a space of supplemental functions. The direct serendipity elements are the precursors of the direct mixed elements in a de Rham complex. The convergence properties of the finite elements are shown under a regularity assumption on the shapes of the polygons in the mesh, as well as some mild restrictions on the choices one can make in the construction of the supplemental functions. Numerical experiments on various meshes exhibit the performance of these new families of finite elements.

     
    more » « less
  4. Finite element methods for electromagnetic problems modeled by Maxwell-type equations are highly sensitive to the conformity of approximation spaces, and non-conforming methods may cause loss of convergence. This fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the literature regarding the application to electromagnetic interface problems, as they are based on non-conforming spaces. In this work, a novel immersed virtual element method for solving a three-dimensional (3D) H(curl) interface problem is developed, and the motivation is to combine the conformity of virtual element spaces and robust approximation capabilities of immersed finite element spaces. The proposed method is able to achieve optimal convergence. To develop a systematic framework, the [Formula: see text], H(curl) and H(div) interface problems and their corresponding problem-orientated immersed virtual element spaces are considered all together. In addition, the de Rham complex will be established based on which the Hiptmair–Xu (HX) preconditioner can be used to develop a fast solver for the H(curl) interface problem. 
    more » « less
  5. We construct and analyze a CutFEM discretization for the Stokes problem based on the Scott–Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangulations which are not fitted to the smooth physical domain. Boundary conditions are imposed via penalization through the help of a Nitsche-type discretization, whereas stability with respect to small and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. We show stability of the scheme as well as a divergence–free property of the discrete velocity outside an O ( h ) neighborhood of the boundary. To mitigate the error caused by the violation of the divergence–free condition, we introduce local grad–div stabilization. The error analysis shows that the grad–div parameter can scale like O ( h −1 ), allowing a rather heavy penalty for the violation of mass conservation, while still ensuring optimal order error estimates. 
    more » « less