skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 1, 2025

Title: Finite element de Rham and Stokes complexes in three dimensions
Finite element de Rham complexes and finite element Stokes complexes with varying degrees of smoothness in three dimensions are systematically constructed in this paper. Smooth scalar finite elements in three dimensions are derived through a non-overlapping decomposition of the simplicial lattice. H(div)-conforming finite elements and H(curl)-conforming finite elements with varying degrees of smoothness are devised based on these smooth scalar finite elements. The finite element de Rham complexes with corresponding smoothness and commutative diagrams are induced by these elements. The div stability of the H(div)-conforming finite elements is established, and the exactness of these finite element complexes is proven.  more » « less
Award ID(s):
2309785 2012465
PAR ID:
10510574
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Mathematics of Computation
Volume:
93
Issue:
345
ISSN:
0025-5718
Page Range / eLocation ID:
55 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A finite element elasticity complex on tetrahedral meshes and the corresponding commutative diagram are devised. The H 1 H^1 conforming finite element is the finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H ( inc ) H(\operatorname {inc}) -conforming finite element of minimum polynomial degree 6 6 for symmetric tensors is the focus of this paper. Our construction appears to be the first H ( inc ) H(\operatorname {inc}) -conforming finite elements on tetrahedral meshes without further splitting. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc \operatorname {inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition. The trace of the inc \operatorname {inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Two-dimensional smooth finite element Hessian complex and div ⁡ div \operatorname {div}\operatorname {div} complex are constructed. 
    more » « less
  2. Abstract

    We construct new families ofdirectserendipity anddirectmixed finite elements on general planar, strictly convex polygons that areH1andH(div) conforming, respectively, and possess optimal order of accuracy for any order. They have a minimal number of degrees of freedom subject to the conformity and accuracy constraints. The name arises because the shape functions are defineddirectlyon the physical elements, i.e., without using a mapping from a reference element. The finite element shape functions are defined to be the full spaces of scalar or vector polynomials plus a space of supplemental functions. The direct serendipity elements are the precursors of the direct mixed elements in a de Rham complex. The convergence properties of the finite elements are shown under a regularity assumption on the shapes of the polygons in the mesh, as well as some mild restrictions on the choices one can make in the construction of the supplemental functions. Numerical experiments on various meshes exhibit the performance of these new families of finite elements.

     
    more » « less
  3. Finite element spaces on a tetrahedron are constructed for div div -conforming symmetric tensors in three dimensions. The key tools of the con- struction are the decomposition of polynomial tensor spaces and the charac- terization of the trace operators. First, the div div Hilbert complex and its corresponding polynomial complexes are presented. Several decompositions of polynomial vector and tensor spaces are derived from the polynomial com- plexes. Second, traces for the divdiv operator are characterized through a Green’s identity. Besides the normal-normal component, another trace involving combination of first order derivatives of the tensor is continuous across the face. Due to the smoothness of polynomials, the symmetric tensor element is also continuous at vertices, and on the plane orthogonal to each edge. Besides, a finite element for sym curl-conforming trace-free tensors is constructed following the same approach. Putting all together, a finite element div div complex, as well as the bubble functions complex, in three dimensions is established. 
    more » « less
  4. We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space.

     
    more » « less
  5. Abstract The classical serendipity and mixed finite element spaces suffer from poor approximation on nondegenerate, convex quadrilaterals. In this paper, we develop families of direct serendipity and direct mixed finite element spaces, which achieve optimal approximation properties and have minimal local dimension. The set of local shape functions for either the serendipity or mixed elements contains the full set of scalar or vector polynomials of degree r , respectively, defined directly on each element (i.e., not mapped from a reference element). Because there are not enough degrees of freedom for global $$H^1$$ H 1 or $$H(\text {div})$$ H ( div ) conformity, exactly two supplemental shape functions must be added to each element when $$r\ge 2$$ r ≥ 2 , and only one when $$r=1$$ r = 1 . The specific choice of supplemental functions gives rise to different families of direct elements. These new spaces are related through a de Rham complex. For index $$r\ge 1$$ r ≥ 1 , the new families of serendipity spaces $${\mathscr {DS}}_{r+1}$$ DS r + 1 are the precursors under the curl operator of our direct mixed finite element spaces, which can be constructed to have reduced or full $$H(\text {div})$$ H ( div ) approximation properties. One choice of direct serendipity supplements gives the precursor of the recently introduced Arbogast–Correa spaces (SIAM J Numer Anal 54:3332–3356, 2016. 10.1137/15M1013705 ). Other fully direct serendipity supplements can be defined without the use of mappings from reference elements, and these give rise in turn to fully direct mixed spaces. Our development is constructive, so we are able to give global bases for our spaces. Numerical results are presented to illustrate their properties. 
    more » « less