skip to main content


Title: Cross-shelf thermal variability in southern Lake Michigan during the stratified periods: LAKE MICHIGAN THERMAL STRUCTURE
Award ID(s):
1030842
NSF-PAR ID:
10092057
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
117
Issue:
C2
ISSN:
0148-0227
Page Range / eLocation ID:
n/a to n/a
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In June 2020, a series of Unmanned Aerial System (UAS) flights were conducted as part of the Wisconsin’s Dynamic Influence of Shoreline Circulations on Ozone (WiscoDisco20) campaign over the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. Temperature and humidity measurements were taken using an iMet-XQ2 atmospheric sensor and ozone measurements were taken by a 2B Tech POM sensor. Both sensors were mounted on a DJI M600 Hexacopter and two flights were conducted a day, one in the morning around 8 am (CDT), and one in the afternoon around 2 pm (CDT). Each flight was broken up into three subsections to land and switch batteries, and hover altitudes were 10 meters above ground level (m AGL), 15, 30, 45, 60, 75, 90, 105, and 120 m AGL. Observations aloft were compared with observations from a regulatory ground station to verify the reliability of the UAS measurements. Using the field data compiled from June 15-19, 2020, the existence of atmospheric inversions that were introduced by east to southeast winds illustrated a clear lake breeze effect. Atmospheric inversions are sections of the atmosphere where the temperature, humidity, and pollutant composition can have sudden dramatic shifts. These inversions occurred at different heights each day, but the inversion layer’s beginning ranged from 40 m to 100 m. The inversions demonstrated a large change in both humidity and temperature, often sharply changing up to 5 °C and by up to 35% relative humidity. With this change also comes a significant increase in ozone concentration in the inversion layer compared to its surroundings, with ozone peaking in concentration at the beginning of the inversion layer. Ozone in the inversion layer was regularly found to be in excess regulatory safety standards of throughout the week. 
    more » « less
  2. The Wisconsin’s Dynamic Influence of Shoreline Circulations on Ozone (WiscoDISCO) campaigns have explored lower atmospheric properties of the Lake Michigan shoreline during episodes of high ozone. Uncrewed aerial systems have been deployed in conjunction with Doppler lidar to study the transition of marine air as it moves from overwater to overland during lake breeze circulations. During WiscoDISCO-21 multi-platform UAS were deployed: a fixed wing UAS flew overwater and overland up to 500 m AGL to measure thermodynamic and kinematic properties of the atmosphere and a multi-rotor copter UAS flew slow ascents to capture ozone concentrations and meteorological variables over land. The lake breeze circulation was characterized by an inversion overwater with steepest inversions at 100-200 m AGL transitioning to a higher maximum inversion overland underneath which a buoyant internal boundary layer developed. Evidence for easterly circulations against synoptic flow extending up to ~450 m AGL were seen from Doppler lidar and fixed-wing UAS observations. During WiscoDISCO-22 two multirotor copters were flown simultaneously, one overwater at shoreline and one overland, to investigate the changes in ozone profiles and lower atmosphere meteorology as lake breeze circulation developed. Ozone concentrations at mid-day during lake breeze were observed at maximum concentrations above the internal boundary layer over land. Analysis of marine layer depth through computation of the height of maximum buoyancy suppression, height of maximum easterly winds and bulk Richardson number analysis will be discussed. 
    more » « less
  3. The air quality at the Lake Michigan shoreline in southeastern Wisconsin is heavily influenced by the combination of Chicago area urban emissions and the meteorology over the lake. In June 2020, a multi-rotor DJI M600 Pro unmanned aerial system (UAS) equipped with a small ozone monitor (2B POM) and a meteorological sensor (iMET-XF) was flown on forecasted ozone exceedance days in the morning and evening to measure ozone, temperature, pressure and humidity profiles from 5-120 m AGL at the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. The Wisconsin DNR lakeshore air quality monitor at Chiwaukee Prairie in Kenosha, WI (AIRS ID 55-059-0019) sits 0.16 km from the shoreline and at the Wisconsin-Illinois boarder, near to where the UAS flights took place. The Chiwaukee Priaire monitoring station was equipped for an enhanced monitoring season, with a LIDAR Wind Profiler instrument. The combination of UAS measurements with the LIDAR meteorological measurements provide an understanding of the vertical structure in the meteorology of lake breeze and ozone during exceedance days. Temperature measurements aloft from the UAS show an atmospheric inversion at this site all sampling days (June 8, 9, 15-19). The ozone measurements trend with the temperature data, typically with higher ozone aloft than at the surface with a regular feature at 50-80 m AGL. We will discuss the results from the UAS with the LIDAR measurements to help understand the lake breeze influence on the local ozone measurements. 
    more » « less