Cross-shelf thermal variability in southern Lake Michigan during the stratified periods: LAKE MICHIGAN THERMAL STRUCTURE
- Award ID(s):
- 1030842
- PAR ID:
- 10092057
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 117
- Issue:
- C2
- ISSN:
- 0148-0227
- Page Range / eLocation ID:
- n/a to n/a
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Metals are used in primary producer metabolic pathways, such as photosynthesis and the acquisition of macronutrients nitrogen (N) and phosphorus (P), yet we often do not know their potential as limiting nutrients in freshwaters. In the Great Lakes, metals have sometimes been identified as limiting the acquisition of macronutrients, mostly in off-shore waters that are relatively isolated from tributary inputs and sediment interactions. We hypothesized that another area where metals might be important was within harmful algal blooms (HABs). Harmful algal blooms are more likely to occur where N and P loads are elevated due to human activities, but short-term growth assays still often find summer bloom communities are N or P limited due to high biotic demand. This high biotic is associated with rapid nutrient recycling which may increase demand for trace metals beyond the available supply. A relatively common cyanotoxin (microcystin) has also been hypothesized to have a role in trace metal management, so trace metal demand may also influence the toxicity of bloom communities. Here, we used nutrient diffusing substrates to measure the magnitude of macronutrient and trace metal effects on growth and toxicity of biofilms suspended in 10 nearshore sites in Lake Michigan and Lake Erie (5 with and 5 without perennial HABs). We measured microcystin, chlorophyll a, ash free dry mass and community composition on the experimental biofilms.more » « less
-
The lake breeze effect along the shoreline of lake Michigan has been attributed to causing high tropospheric ozone concentrations at shoreline locations. The 2021 Wisconsin’s Dynamic Influence of Shoreline Circulation on Ozone (WiscoDISCO-21) campaign involved atmospheric measurements over Chiwaukee Prairie State Natural Area in Southeastern Wisconsin from May 21-26, 2021. Three different platforms were used to collect data on this campaign in addition to the regulatory monitor at this site. Two uncrewed aerial systems (UAS), an M210 multirotor copter and the University of Colorado RAAVEN fixed-wing were flown. The RAAVEN flew between 0 and 500 meters above ground level (m AGL) and measured many atmospheric conditions, the most pertinent being temperature, humidity, and winds. The M210 flew between 0 and 120 m AGL and was equipped with a 2B Technologies Personalized Ozone Monitor (POM) which captured ozone concentrations and an Interment Systems iMET-XQ2 meteorology sensor which captured relative humidity, temperature, and pressure. A Lidar Wind Profiler measured backscatter intensities, wind speeds and direction up to 2000 m AGL. Using data from the RAAVEN, the Wisconsin DNR, and the iMET-XQ2, at least one lake breeze was detected every day of the campaign. The largest lake breezes were detected on May 22, 2021, from 17:00-21:38 UTC and on May 24, 2021, from 14:24-22:51 UTC. The presence of the lake breezes correlated with detected temperature inversions measured from the RAAVEN and high ozone events measured from the M210. Lake breezes were investigated with their relationship to vertical profiles measured on the UAS, ozone concentrations, and marine boundary layer height observed with Doppler Lidar and modeled by the High-Resolution Rapid Refresh (HRRR) meteorological model.more » « less
An official website of the United States government

