Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie.
more »
« less
Data associated with nutrient diffusing substrate experiments conducted in Lake Michigan and Lake Erie (2017)
Metals are used in primary producer metabolic pathways, such as photosynthesis and the acquisition of macronutrients nitrogen (N) and phosphorus (P), yet we often do not know their potential as limiting nutrients in freshwaters. In the Great Lakes, metals have sometimes been identified as limiting the acquisition of macronutrients, mostly in off-shore waters that are relatively isolated from tributary inputs and sediment interactions. We hypothesized that another area where metals might be important was within harmful algal blooms (HABs). Harmful algal blooms are more likely to occur where N and P loads are elevated due to human activities, but short-term growth assays still often find summer bloom communities are N or P limited due to high biotic demand. This high biotic is associated with rapid nutrient recycling which may increase demand for trace metals beyond the available supply. A relatively common cyanotoxin (microcystin) has also been hypothesized to have a role in trace metal management, so trace metal demand may also influence the toxicity of bloom communities. Here, we used nutrient diffusing substrates to measure the magnitude of macronutrient and trace metal effects on growth and toxicity of biofilms suspended in 10 nearshore sites in Lake Michigan and Lake Erie (5 with and 5 without perennial HABs). We measured microcystin, chlorophyll a, ash free dry mass and community composition on the experimental biofilms.
more »
« less
- Award ID(s):
- 1943182
- PAR ID:
- 10629618
- Publisher / Repository:
- U.S. Geological Survey
- Date Published:
- Subject(s) / Keyword(s):
- aquatic biology
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Zero v1.0 Universal
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.more » « less
-
Abstract Efforts to reduce the frequency, extent, and toxicity of harmful algal blooms (HABs) require knowledge about drivers of algal growth, toxin production, and shifts in phytoplankton community composition to cyanobacterial dominance. Although labile nitrogen (N) and phosphorus (P) fuel primary production, micronutrients also play roles as the enzymatic engines that facilitate rapid and efficient growth and toxin production. Macro‐ and micronutrient availability can shape community composition and function by selecting for particular taxa. To address how phytoplankton in two Great Lakes subbasins respond to macro‐ and micronutrients, we conducted bottle incubation enrichment experiments using water collected from two blooming and two nonblooming sites in Lakes Erie and Michigan during late summer (August). Three of the four sites exhibited multi‐nutrient limitation of growth. Both blooming sites responded strongest to enrichment. Both nonblooming sites responded the strongest to enrichment, and three of the four sites responded in some way to a mix of micronutrients (Fe, Mn, Mo, Ni, and Zn).Microcystis aeruginosarelative abundance increased most with N enrichment, while P enrichment increased the abundance of diatoms and chlorophytes. At the Fox River, N‐enriched communities grew 10%–20% more than non‐N enriched communities (measured as chlorophylla), and N‐enriched communities had, on average, over twice as much microcystin (non‐N communities average MC = 2.45 μg · L−1, +N communities MC = 5.35 μg · L−1). These overarching trends support the idea that control of HABs may not be effective with a P‐only approach.more » « less
-
Humbert, Jean-François (Ed.)Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis .more » « less
-
Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa . Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.more » « less
An official website of the United States government
