skip to main content


Title: Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific
Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by ∼80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle.  more » « less
Award ID(s):
1637632
NSF-PAR ID:
10092127
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
48
ISSN:
0027-8424
Page Range / eLocation ID:
12235 to 12240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady- state” model shows increases from 0.1 ± 1.7 dpm m-2 d-1 to 84.8 ± 6.2 dpm m-2 d-1 over the ~1 month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (>0.8 μm) and particulate 210Po (>0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.5 mmol m-2 d-1 on 20 May and 6.3 mmol C m-2 d-1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m-2 d-1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m-2 d-1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m-2 d-1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered. 
    more » « less
  2. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  3. Abstract. The magnitude and controls of particulate carbon exported from surface watersand its remineralization at depth are poorly constrained. The Carbon FluxExplorer (CFE), a Lagrangian float-deployed imaging sediment trap, has beendesigned to optically measure the hourly variations of particle flux tokilometer depths for months to seasons while relaying data in near-real timeto shore via satellite without attending ships. The main optical proxy forparticle load recorded by the CFE, volume attenuance (VA; units ofmATN cm2), while rigorously defined and highly precise, has not beenrobustly calibrated in terms of particulate organic carbon (POC), nitrogen(PN) and phosphorus (PP). In this study, a novel 3-D-printed particle samplerusing cutting edge additive manufacturing was developed and integrated withthe CFE. Two such modified floats (CFE-Cals) were deployed a total of15 times for 18–24 h periods to gain calibration imagery and samples atdepths near 150 m in four contrasting productivity environments during theJune 2017 California Current Ecosystem Long-Term Ecological Research (LTER)process study. Regression slopes for VA : POC and VA : PN (unitsmATN cm2: mmol; R2, n, p value in parentheses) were1.01×104 (0.86, 12, < 0.001) and 1.01×105(0.86, 15, < 0.001), respectively, and were not sensitive toparticle size classes or the contrasting environments encountered. PP was notwell correlated with VA, reflecting the high lability of P relative to C andN. The volume attenuance flux (VAF) to POC flux calibration is compared toprevious estimates.

     
    more » « less
  4. Incarbona, Alessandro (Ed.)
    Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a ), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves. 
    more » « less
  5. Abstract

    Plankton‐derived, microscopic, and macroscopic sinking aggregates constitute most of the particulate organic carbon (POC) flux in the oceans. While the flux of particulate organic matter and associated elements has been quantified at the Bermuda Atlantic Time‐series Study (BATS) station for several decades, we lack an understanding of the source and composition of sinking particles, as well as the fate of predominant phytoplankton taxa. We determined the composition of individual sinking particles and their microbial communities in the upper 300 m depth at the BATS station in fall 2017 and spring 2018 by image analysis and V4 amplicon sequencing of the 16S and 18S rRNA genes. The sinking particles were primarily composed of phytodetrital aggregates, fecal aggregates, and fecal pellets. In the fall, phytodetrital aggregates were numerically dominant and drove the majority of the POC flux; however, in the spring, particle flux of all particle categories declined below 150 m, and the POC flux at 200 m shifted to one driven by fecal aggregates. The relative composition of the microbial communities associated with phytodetrital and fecal aggregates were statistically indistinguishable in both seasons, and prokaryotic taxa known to be associated with the gut microbiomes of zooplankton were indicators of the sinking particles. Our results point to the utilization and modification of sinking particles by resident midwater zooplankton populations, and to fecal pellets as the predominant mechanism transporting picophytoplankton to depth.

     
    more » « less