skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of a falling particle curtain
Falling particle curtains are important in many engineering applications, including receivers for concentrating solar power (CSP) facilities. During the formation of such a curtain, we observe a multiphase analog of Rayleigh-Taylor instability. It was originally described in 2011 for a situation when air sparsely seeded with glycol droplets was placed above a volume of unseeded air, producing an unstably stratified average density distribution that was characterized by an effective Atwood number 0.03. In that case, the evolution of the instability was indistinguishable from single-phase Rayleigh-Taylor instability with the same Atwood number, as the presence of the droplets largely acted as an additional contribution to the mean density of the gaseous medium. Here we present experiments where the volume (and mass) fraction of the seeding particles in gas is considerably higher, and the gravity-driven flow is dominated by the particle movement. In this case, the evolution of the observed instability appears significantly different.  more » « less
Award ID(s):
1603915
PAR ID:
10092196
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International journal of computational methods and experimental measurements
ISSN:
2046-0546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The coupled effects of the variable-density and compressible isothermal background stratification strength on the growth of the fully compressible single-mode two-dimensional two-fluids Rayleigh--Taylor instability (RTI) are examined using direct numerical simulations (DNS) with varying Atwood numbers, A = 0.1, 0.3, and 0.5; and different background isothermal Mach numbers, Ma = 0.3, 0.9, and 1.5, respectively, in the problem Reynolds number, Re_0, range of 6375 to 51000. The results show that higher stratification strength leads to more suppression of the RTI growth for the cases with a low Atwood number. However, when the Atwood number is high, the suppression effect of compressible background stratification on the RTI growth becomes nonlinear with Ma, and in general, it becomes weaker. Furthermore, for the case with the highest background stratification strength and highest Atwood number, we observe local supersonic regions and even shock waves with increasing Re_0 at late time during the mixing. Additionally, a relevant transport equation for mixing is studied, and it is found that diffusion and production terms are dominant, and the redistribution term becomes more important with a larger Atwood number. Vortex dynamics are also analyzed using normalized vorticity and its transport equation. It is observed that for cases at various Atwood numbers, increasing Mach number generally suppresses the growth of the vortical structures. Examining the vorticity transport equation, it is shown that the baroclinicity and viscous diffusion terms are the major contributors to the change of vorticity in cases with different combinations of A and Ma. In addition, with increasing Ma, the vorticity-dilatation term becomes more significant due to the flow compressibility effects. It is also noticeable that small-scale vortical structures become more pronounced with increasing Re_0 for all Atwood numbers. 
    more » « less
  2. Abstract The Rayleigh–Taylor (RT) instability is ubiquitously observed, yet has traditionally been studied using ideal fluid models. Collisionality can vary strongly across the fluid interface, and previous work demonstrates the necessity of kinetic models to completely capture dynamics in certain collisional regimes. Where previous kinetic simulations used spatially and temporally constant collision frequency, this work presents five-dimensional (two spatial, three velocity dimensions) continuum-kinetic simulations of the RT instability using a more realistic spatially varying collision frequency. Three cases of collisional variation are explored for two Atwood numbers: low to intermediate, intermediate to high, and low to high. The low-to-intermediate case exhibits no RT instability growth, while the intermediate-to-high case is similar to a fluid-limit kinetic case with interface widening biased toward the lower-collisionality region. A novel contribution of this work is the low-to-high collisionality case that shows significantly altered instability growth through an upward movement of the interface and damped spike growth due to increased free-streaming particle diffusion in the lower region. Contributions to the energy flux from the non-Maxwellian portions of the distribution function are not accessible to fluid models and are greatest in magnitude in the spike and regions of low collisionality. Increasing the Atwood number results in greater RT instability growth and reduced upward interface movement. Deviation of the distribution function from Maxwellian is inversely proportional to collision frequency and concentrated around the fluid interface. The linear phase of RT instability growth is well described by theoretical linear growth rates accounting for viscosity and diffusion. 
    more » « less
  3. Rayleigh–Taylor instability, RTI, occurs at the interface separating two fluids subjected to acceleration when the density gradient and the acceleration are in opposite directions. Previous scientific research primarily considered RTI under the incompressible assumption, which may not be valid in many high-energy-density engineering applications and astrophysical phenomena. In this study, the compressibility effects of the background isothermal stratification strength on multi-mode two-dimensional RTI are explored using fully compressible multi-species direct numerical simulations. Cases under three different isothermal Mach numbers – Ma=0.15,  0.3,  and  0.45 – are investigated to explore weakly, moderately, and strongly stratified compressible RTI, respectively, at an Atwood number of 0.04. Unlike incompressible RTI, an increase in the flow compressibility through the strength of the background stratification can suppress the RTI growth and can lead to a termination of the RTI mixing layer growth with a highly molecularly mixed state. Our findings suggest that even at the chosen relatively low Atwood number, the variable-density effects can be significantly enhanced due to an increase in the background stratification for the compressible RTI as different spatial profiles become noticeably asymmetric across the mixing layer for the strongly stratified case. In addition, this study compares the chaotic behavior of the cases by studying the transport of the turbulent kinetic energy as well as the vortex dynamics. The Reynolds number dependence of the results is also examined with three different Reynolds numbers, and the findings for the large-scale mixing and flow quantities of interest are shown to be universal in the range of the Reynolds numbers studied. 
    more » « less
  4. Abstract We develop a suite of 3D hydrodynamic models of supernova remnants (SNRs) expanding against the circumstellar medium (CSM). We study the Rayleigh–Taylor instability forming at the expansion interface by calculating an angular power spectrum for each of these models. The power spectra of young SNRs are seen to exhibit a dominant angular mode, which is a diagnostic of their ejecta density profile as found by previous studies. The steep scaling of power at smaller modes and the time evolution of the spectra are indicative of the absence of a turbulent cascade. Instead, as the time evolution of the spectra suggests, they may be governed by an angular mode-dependent net growth rate. We also study the impact of anisotropies in the ejecta and in the CSM on the power spectra of velocity and density. We confirm that perturbations in the density field (whether imposed on the ejecta or the CSM) do not influence the anisotropy of the remnant significantly unless they have a very large amplitude and form large-scale coherent structures. In any case, these clumps can only affect structures on large angular scales. The power spectrum on small angular scales is completely independent of the initial clumpiness and governed only by the growth and saturation of the Rayleigh–Taylor instability. 
    more » « less
  5. Particle-laden flows of sedimenting solid particles or droplets in a carrier gas have strong inter-phase coupling. Even at low particle volume fractions, the two-way coupling can be significant due to the large particle to gas density ratio. In this semi-dilute regime, the slip velocity between phases leads to sustained clustering that strongly modulates the overall flow. The analysis of perturbations in homogeneous shear reveals the process by which clusters form: (i) the preferential concentration of inertial particles in the stretching regions of the flow leads to the formation of highly concentrated particle sheets, (ii) the thickness of the latter is controlled by particle-trajectory crossing, which causes a local dispersion of particles, (iii) a transverse Rayleigh–Taylor instability, aided by the shear-induced rotation of the particle sheets towards the gravity normal direction, breaks the planar structure into smaller clusters. Simulations in the Euler–Lagrange formalism are compared to Euler–Euler simulations with the two-fluid and anisotropic-Gaussian methods. It is found that the two-fluid method is unable to capture the particle dispersion due to particle-trajectory crossing and leads instead to the formation of discontinuities. These are removed with the anisotropic-Gaussian method which derives from a kinetic approach with particle-trajectory crossing in mind. 
    more » « less