Abstract We present a method for analyzing supernova remnants (SNRs) by diagnosing the drivers responsible for structure at different angular scales. First, we perform a suite of hydrodynamic models of the Rayleigh–Taylor instability (RTI) as a supernova (SN) collides with its surrounding medium. Using these models we demonstrate how power spectral analysis can be used to attribute which scales in an SNR are driven by RTI and which must be caused by intrinsic asymmetries in the initial explosion. We predict the power spectrum of turbulence driven by RTI and identify a dominant angular mode that represents the largest scale that efficiently grows via RTI. We find that this dominant mode relates to the density scale height in the ejecta, and therefore reveals the density profile of the SN ejecta. If there is significant structure in an SNR on angular scales larger than this mode, then it is likely caused by anisotropies in the explosion. Structure on angular scales smaller than the dominant mode exhibits a steep scaling with wavenumber, possibly too steep to be consistent with a turbulent cascade, and therefore might be determined by the saturation of RTI at different length scales (although systematic 3D studies are needed to investigate this). We also demonstrate, consistent with previous studies, that this power spectrum is independent of the magnitude and length scales of perturbations in the surrounding medium and therefore this diagnostic is unaffected by “clumpiness” in the circumstellar medium.
more »
« less
A 3D Numerical Study of Anisotropies in Supernova Remnants
Abstract We develop a suite of 3D hydrodynamic models of supernova remnants (SNRs) expanding against the circumstellar medium (CSM). We study the Rayleigh–Taylor instability forming at the expansion interface by calculating an angular power spectrum for each of these models. The power spectra of young SNRs are seen to exhibit a dominant angular mode, which is a diagnostic of their ejecta density profile as found by previous studies. The steep scaling of power at smaller modes and the time evolution of the spectra are indicative of the absence of a turbulent cascade. Instead, as the time evolution of the spectra suggests, they may be governed by an angular mode-dependent net growth rate. We also study the impact of anisotropies in the ejecta and in the CSM on the power spectra of velocity and density. We confirm that perturbations in the density field (whether imposed on the ejecta or the CSM) do not influence the anisotropy of the remnant significantly unless they have a very large amplitude and form large-scale coherent structures. In any case, these clumps can only affect structures on large angular scales. The power spectrum on small angular scales is completely independent of the initial clumpiness and governed only by the growth and saturation of the Rayleigh–Taylor instability.
more »
« less
- PAR ID:
- 10536272
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 956
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work numerically investigates the role of viscosity and resistivity in Rayleigh–Taylor instabilities in magnetized high-energy-density (HED) plasmas for a high Atwood number and high plasma beta regimes surveying across plasma beta and magnetic Prandtl numbers. The numerical simulations are performed using the visco-resistive magnetohydrodynamic equations. Results presented here show that the inclusion of self-consistent viscosity and resistivity in the system drastically changes the growth of the Rayleigh–Taylor instability (RTI) as well as modifies its internal structure at smaller scales. It is seen here that the viscosity has a stabilizing effect on the RTI. Moreover, the viscosity inhibits the development of small-scale structures and also modifies the morphology of the tip of the RTI spikes. On the other hand, the resistivity reduces the magnetic field stabilization, supporting the development of small-scale structures. The morphology of the RTI spikes is seen to be unaffected by the presence of resistivity in the system. An additional novelty of this work is in the disparate viscosity and resistivity profiles that may exist in HED plasmas and their impact on RTI growth, morphology and the resulting turbulence spectra. Furthermore, this work shows that the dynamics of the magnetic field is independent of viscosity and likewise the resistivity does not affect the dissipation of enstrophy and kinetic energy. In addition, power law scalings of enstrophy, kinetic energy and magnetic field energy are provided in both the injection range and inertial sub-range, which could be useful for understanding RTI induced turbulent mixing in HED laboratory and astrophysical plasmas and could aid in the interpretation of observations of RTI-induced turbulence spectra.more » « less
-
We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh–Taylor (RT) instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip, and inside the spiral of the mushroom structure, which cover most of the interfacial region as the instability develops. Conditional statistics performed on the three sets of particles and over different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for different particle ensembles arising from the differing evolution patterns of the particle acceleration. In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction with the transported fluid from the spike side, due to the shear driven Kelvin–Helmholtz instability. Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration.more » « less
-
Falling particle curtains are important in many engineering applications, including receivers for concentrating solar power (CSP) facilities. During the formation of such a curtain, we observe a multiphase analog of Rayleigh-Taylor instability. It was originally described in 2011 for a situation when air sparsely seeded with glycol droplets was placed above a volume of unseeded air, producing an unstably stratified average density distribution that was characterized by an effective Atwood number 0.03. In that case, the evolution of the instability was indistinguishable from single-phase Rayleigh-Taylor instability with the same Atwood number, as the presence of the droplets largely acted as an additional contribution to the mean density of the gaseous medium. Here we present experiments where the volume (and mass) fraction of the seeding particles in gas is considerably higher, and the gravity-driven flow is dominated by the particle movement. In this case, the evolution of the observed instability appears significantly different.more » « less
-
The two-stream instability (Buneman instability) is traditionally derived as a collisionless instability with the presumption that collisions inhibit this instability. We show here via a combination of a collisional two-fluid model and associated experimental observations made in the Caltech plasma jet experiment, that in fact, a low-frequency mode of the two-stream instability is indifferent to collisions. Despite the collision frequency greatly exceeding the growth rate of the instability, the instability can still cause an exponential growth of electron velocity and a rapid depletion of particle density. Nevertheless, high collisionality has an important effect as it enables the development of a double layer when the cross section of the plasma jet is constricted by a kink-instigated Rayleigh–Taylor instability.more » « less